opencv/modules/gapi/samples/onevpl_infer_single_roi.cpp

710 lines
30 KiB
C++
Raw Normal View History

#include <algorithm>
#include <fstream>
#include <iostream>
#include <cctype>
#include <tuple>
#include <opencv2/imgproc.hpp>
#include <opencv2/gapi.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/cpu/gcpukernel.hpp>
#include <opencv2/gapi/infer/ie.hpp>
#include <opencv2/gapi/render.hpp>
#include <opencv2/gapi/streaming/onevpl/source.hpp>
#include <opencv2/highgui.hpp> // CommandLineParser
#include <opencv2/gapi/infer/parsers.hpp>
#ifdef HAVE_INF_ENGINE
#include <inference_engine.hpp> // ParamMap
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
#pragma comment(lib,"d3d11.lib")
// get rid of generate macro max/min/etc from DX side
#define D3D11_NO_HELPERS
#define NOMINMAX
#include <cldnn/cldnn_config.hpp>
#include <d3d11.h>
#pragma comment(lib, "dxgi")
#undef NOMINMAX
#undef D3D11_NO_HELPERS
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#endif // HAVE_INF_ENGINE
2022-07-08 16:40:25 +08:00
#ifdef __linux__
#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#include "va/va.h"
#include "va/va_drm.h"
#include <fcntl.h>
#include <unistd.h>
#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#endif // __linux__
const std::string about =
"This is an OpenCV-based version of oneVPLSource decoder example";
const std::string keys =
"{ h help | | Print this help message }"
"{ input | | Path to the input demultiplexed video file }"
"{ output | | Path to the output RAW video file. Use .avi extension }"
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }"
2022-07-08 16:40:25 +08:00
"{ faced | GPU | Target device for face detection model (e.g. AUTO, GPU, VPU, ...) }"
"{ cfg_params | | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }"
"{ streaming_queue_capacity | 1 | Streaming executor queue capacity. Calculated automatically if 0 }"
"{ frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size}"
"{ vpp_frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size for VPP preprocessing results}"
2022-07-08 16:40:25 +08:00
"{ roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }"
"{ source_device | CPU | choose device for decoding }"
"{ preproc_device | CPU | choose device for preprocessing }";
namespace {
2022-07-08 16:40:25 +08:00
bool is_gpu(const std::string &device_name) {
return device_name.find("GPU") != std::string::npos;
}
std::string get_weights_path(const std::string &model_path) {
const auto EXT_LEN = 4u;
const auto sz = model_path.size();
GAPI_Assert(sz > EXT_LEN);
auto ext = model_path.substr(sz - EXT_LEN);
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){
return static_cast<unsigned char>(std::tolower(c));
});
GAPI_Assert(ext == ".xml");
return model_path.substr(0u, sz - EXT_LEN) + ".bin";
}
// TODO: It duplicates infer_single_roi sample
cv::util::optional<cv::Rect> parse_roi(const std::string &rc) {
cv::Rect rv;
char delim[3];
std::stringstream is(rc);
is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height;
if (is.bad()) {
return cv::util::optional<cv::Rect>(); // empty value
}
const auto is_delim = [](char c) {
return c == ',';
};
if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) {
return cv::util::optional<cv::Rect>(); // empty value
}
if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) {
return cv::util::optional<cv::Rect>(); // empty value
}
return cv::util::make_optional(std::move(rv));
}
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
// Since ATL headers might not be available on specific MSVS Build Tools
// we use simple `CComPtr` implementation like as `ComPtrGuard`
// which is not supposed to be the full functional replacement of `CComPtr`
// and it uses as RAII to make sure utilization is correct
template <typename COMNonManageableType>
void release(COMNonManageableType *ptr) {
if (ptr) {
ptr->Release();
}
}
template <typename COMNonManageableType>
using ComPtrGuard = std::unique_ptr<COMNonManageableType, decltype(&release<COMNonManageableType>)>;
template <typename COMNonManageableType>
ComPtrGuard<COMNonManageableType> createCOMPtrGuard(COMNonManageableType *ptr = nullptr) {
return ComPtrGuard<COMNonManageableType> {ptr, &release<COMNonManageableType>};
}
using AccelParamsType = std::tuple<ComPtrGuard<ID3D11Device>, ComPtrGuard<ID3D11DeviceContext>>;
AccelParamsType create_device_with_ctx(IDXGIAdapter* adapter) {
UINT flags = 0;
D3D_FEATURE_LEVEL feature_levels[] = { D3D_FEATURE_LEVEL_11_1,
D3D_FEATURE_LEVEL_11_0,
};
D3D_FEATURE_LEVEL featureLevel;
ID3D11Device* ret_device_ptr = nullptr;
ID3D11DeviceContext* ret_ctx_ptr = nullptr;
HRESULT err = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN,
nullptr, flags,
feature_levels,
ARRAYSIZE(feature_levels),
D3D11_SDK_VERSION, &ret_device_ptr,
&featureLevel, &ret_ctx_ptr);
if (FAILED(err)) {
throw std::runtime_error("Cannot create D3D11CreateDevice, error: " +
std::to_string(HRESULT_CODE(err)));
}
return std::make_tuple(createCOMPtrGuard(ret_device_ptr),
createCOMPtrGuard(ret_ctx_ptr));
}
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
} // anonymous namespace
namespace custom {
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector");
using GDetections = cv::GArray<cv::Rect>;
using GRect = cv::GOpaque<cv::Rect>;
using GSize = cv::GOpaque<cv::Size>;
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>;
G_API_OP(ParseSSD, <GDetections(cv::GMat, GRect, GSize)>, "sample.custom.parse-ssd") {
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
// TODO: It duplicates infer_single_roi sample
G_API_OP(LocateROI, <GRect(GSize)>, "sample.custom.locate-roi") {
static cv::GOpaqueDesc outMeta(const cv::GOpaqueDesc &) {
return cv::empty_gopaque_desc();
}
};
G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") {
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) {
return cv::empty_array_desc();
}
};
GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) {
// This is the place where we can run extra analytics
// on the input image frame and select the ROI (region
// of interest) where we want to detect our objects (or
// run any other inference).
//
// Currently it doesn't do anything intelligent,
// but only crops the input image to square (this is
// the most convenient aspect ratio for detectors to use)
static void run(const cv::Size& in_size,
cv::Rect &out_rect) {
// Identify the central point & square size (- some padding)
const auto center = cv::Point{in_size.width/2, in_size.height/2};
auto sqside = std::min(in_size.width, in_size.height);
// Now build the central square ROI
out_rect = cv::Rect{ center.x - sqside/2
, center.y - sqside/2
, sqside
, sqside
};
}
};
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) {
// This kernel converts the rectangles into G-API's
// rendering primitives
static void run(const std::vector<cv::Rect> &in_face_rcs,
const cv::Rect &in_roi,
std::vector<cv::gapi::wip::draw::Prim> &out_prims) {
out_prims.clear();
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) {
return cv::gapi::wip::draw::Rect(rc, clr, 2);
};
out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan
for (auto &&rc : in_face_rcs) {
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green
}
}
};
GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) {
static void run(const cv::Mat &in_ssd_result,
const cv::Rect &in_roi,
const cv::Size &in_parent_size,
std::vector<cv::Rect> &out_objects) {
const auto &in_ssd_dims = in_ssd_result.size;
GAPI_Assert(in_ssd_dims.dims() == 4u);
const int MAX_PROPOSALS = in_ssd_dims[2];
const int OBJECT_SIZE = in_ssd_dims[3];
GAPI_Assert(OBJECT_SIZE == 7); // fixed SSD object size
const cv::Size up_roi = in_roi.size();
const cv::Rect surface({0,0}, in_parent_size);
out_objects.clear();
const float *data = in_ssd_result.ptr<float>();
for (int i = 0; i < MAX_PROPOSALS; i++) {
const float image_id = data[i * OBJECT_SIZE + 0];
const float label = data[i * OBJECT_SIZE + 1];
const float confidence = data[i * OBJECT_SIZE + 2];
const float rc_left = data[i * OBJECT_SIZE + 3];
const float rc_top = data[i * OBJECT_SIZE + 4];
const float rc_right = data[i * OBJECT_SIZE + 5];
const float rc_bottom = data[i * OBJECT_SIZE + 6];
(void) label; // unused
if (image_id < 0.f) {
break; // marks end-of-detections
}
if (confidence < 0.5f) {
continue; // skip objects with low confidence
}
// map relative coordinates to the original image scale
// taking the ROI into account
cv::Rect rc;
rc.x = static_cast<int>(rc_left * up_roi.width);
rc.y = static_cast<int>(rc_top * up_roi.height);
rc.width = static_cast<int>(rc_right * up_roi.width) - rc.x;
rc.height = static_cast<int>(rc_bottom * up_roi.height) - rc.y;
rc.x += in_roi.x;
rc.y += in_roi.y;
out_objects.emplace_back(rc & surface);
}
}
};
} // namespace custom
namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line);
2022-07-08 16:40:25 +08:00
struct flow {
flow(bool preproc, bool rctx) :
vpl_preproc_enable(preproc),
ie_remote_ctx_enable(rctx) {
}
bool vpl_preproc_enable = false;
bool ie_remote_ctx_enable = false;
};
using support_matrix =
std::map <std::string/*source_dev_id*/,
std::map<std::string/*preproc_device_id*/,
std::map <std::string/*rctx device_id*/, std::shared_ptr<flow>>>>;
support_matrix resolved_conf{{
{"GPU", {{
{"", {{ "CPU", std::make_shared<flow>(false, false)},
{ "GPU", {/* unsupported:
* ie GPU preproc isn't available */}}
}},
{"CPU", {{ "CPU", {/* unsupported: preproc mix */}},
{ "GPU", {/* unsupported: preproc mix */}}
}},
{"GPU", {{ "CPU", std::make_shared<flow>(true, false)},
{ "GPU", std::make_shared<flow>(true, true)}}}
}}
},
{"CPU", {{
{"", {{ "CPU", std::make_shared<flow>(false, false)},
{ "GPU", std::make_shared<flow>(false, false)}
}},
{"CPU", {{ "CPU", std::make_shared<flow>(true, false)},
{ "GPU", std::make_shared<flow>(true, false)}
}},
{"GPU", {{ "CPU", {/* unsupported: preproc mix */}},
{ "GPU", {/* unsupported: preproc mix */}}}}
}}
}
}};
static void print_available_cfg(std::ostream &out,
const std::string &source_device,
const std::string &preproc_device,
const std::string &ie_device_id) {
const std::string source_device_cfg_name("--source_device=");
const std::string preproc_device_cfg_name("--preproc_device=");
const std::string ie_cfg_name("--faced=");
out << "unsupported acceleration param combinations:\n"
<< source_device_cfg_name << source_device << " "
<< preproc_device_cfg_name << preproc_device << " "
<< ie_cfg_name << ie_device_id <<
"\n\nSupported matrix:\n\n" << std::endl;
for (const auto &s_d : cfg::resolved_conf) {
std::string prefix = source_device_cfg_name + s_d.first;
for (const auto &p_d : s_d.second) {
std::string mid_prefix = prefix + +"\t" + preproc_device_cfg_name +
(p_d.first.empty() ? "" : p_d.first);
for (const auto &i_d : p_d.second) {
if (i_d.second) {
std::cerr << mid_prefix << "\t" << ie_cfg_name <<i_d.first << std::endl;
}
}
}
}
}
}
int main(int argc, char *argv[]) {
cv::CommandLineParser cmd(argc, argv, keys);
cmd.about(about);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
// get file name
const auto file_path = cmd.get<std::string>("input");
const auto output = cmd.get<std::string>("output");
const auto opt_roi = parse_roi(cmd.get<std::string>("roi"));
const auto face_model_path = cmd.get<std::string>("facem");
const auto streaming_queue_capacity = cmd.get<uint32_t>("streaming_queue_capacity");
const auto source_decode_queue_capacity = cmd.get<uint32_t>("frames_pool_size");
const auto source_vpp_queue_capacity = cmd.get<uint32_t>("vpp_frames_pool_size");
const auto device_id = cmd.get<std::string>("faced");
2022-07-08 16:40:25 +08:00
const auto source_device = cmd.get<std::string>("source_device");
const auto preproc_device = cmd.get<std::string>("preproc_device");
// validate support matrix
std::shared_ptr<cfg::flow> flow_settings = cfg::resolved_conf[source_device][preproc_device][device_id];
if (!flow_settings) {
cfg::print_available_cfg(std::cerr, source_device, preproc_device, device_id);
return -1;
}
// check output file extension
if (!output.empty()) {
auto ext = output.find_last_of(".");
if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) {
std::cerr << "Output file should have *.avi extension for output video" << std::endl;
return -1;
}
}
// get oneVPL cfg params from cmd
std::stringstream params_list(cmd.get<std::string>("cfg_params"));
std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs;
try {
std::string line;
while (std::getline(params_list, line, ';')) {
source_cfgs.push_back(cfg::create_from_string(line));
}
} catch (const std::exception& ex) {
std::cerr << "Invalid cfg parameter: " << ex.what() << std::endl;
return -1;
}
2022-07-08 16:40:25 +08:00
// apply VPL source optimization params
if (source_decode_queue_capacity != 0) {
source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_frames_pool_size(source_decode_queue_capacity));
}
if (source_vpp_queue_capacity != 0) {
source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_vpp_frames_pool_size(source_vpp_queue_capacity));
}
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> {
face_model_path, // path to topology IR
get_weights_path(face_model_path), // path to weights
device_id
};
2022-07-08 16:40:25 +08:00
// It is allowed (and highly recommended) to reuse predefined device_ptr & context_ptr objects
// received from user application. Current sample demonstrate how to deal with this situation.
//
// But if you do not need this fine-grained acceleration devices configuration then
// just use default constructors for onevpl::GSource, IE and preprocessing module.
// But please pay attention that default pipeline construction in this case will be
// very inefficient and carries out multiple CPU-GPU memory copies
//
// If you want to reach max performance and seize copy-free approach for specific
// device & context selection then follow the steps below.
// The situation is complicated a little bit in comparison with default configuration, thus
// let's focusing this:
//
// - all component-participants (Source, Preprocessing, Inference)
// must share the same device & context instances
//
// - you must wrapping your available device & context instancs into thin
// `cv::gapi::wip::Device` & `cv::gapi::wip::Context`.
// !!! Please pay attention that both objects are weak wrapper so you must ensure
// that device & context would be alived before full pipeline created !!!
//
// - you should pass such wrappers as constructor arguments for each component in pipeline:
// a) use extended constructor for `onevpl::GSource` for activating predefined device & context
// b) use `cfgContextParams` method of `cv::gapi::ie::Params` to enable `PreprocesingEngine`
// for predefined device & context
// c) use `InferenceEngine::ParamMap` to activate remote ctx in Inference Engine for given
// device & context
//
//
//// P.S. the current sample supports heterogenous pipeline construction also.
//// It is possible to make up mixed device approach.
//// Please feel free to explore different configurations!
cv::util::optional<cv::gapi::wip::onevpl::Device> gpu_accel_device;
cv::util::optional<cv::gapi::wip::onevpl::Context> gpu_accel_ctx;
cv::gapi::wip::onevpl::Device cpu_accel_device = cv::gapi::wip::onevpl::create_host_device();
cv::gapi::wip::onevpl::Context cpu_accel_ctx = cv::gapi::wip::onevpl::create_host_context();
// create GPU device if requested
if (is_gpu(device_id)
|| is_gpu(source_device)
|| is_gpu(preproc_device)) {
#ifdef HAVE_DIRECTX
#ifdef HAVE_D3D11
2022-07-08 16:40:25 +08:00
// create DX11 device & context owning handles.
// wip::Device & wip::Context provide non-owning semantic of resources and act
// as weak references API wrappers in order to carry type-erased resources type
// into appropriate modules: onevpl::GSource, PreprocEngine and InferenceEngine
// Until modules are not created owner handles must stay alive
auto dx11_dev = createCOMPtrGuard<ID3D11Device>();
auto dx11_ctx = createCOMPtrGuard<ID3D11DeviceContext>();
auto adapter_factory = createCOMPtrGuard<IDXGIFactory>();
{
IDXGIFactory* out_factory = nullptr;
HRESULT err = CreateDXGIFactory(__uuidof(IDXGIFactory),
reinterpret_cast<void**>(&out_factory));
if (FAILED(err)) {
std::cerr << "Cannot create CreateDXGIFactory, error: " << HRESULT_CODE(err) << std::endl;
return -1;
}
adapter_factory = createCOMPtrGuard(out_factory);
}
auto intel_adapter = createCOMPtrGuard<IDXGIAdapter>();
UINT adapter_index = 0;
const unsigned int refIntelVendorID = 0x8086;
IDXGIAdapter* out_adapter = nullptr;
while (adapter_factory->EnumAdapters(adapter_index, &out_adapter) != DXGI_ERROR_NOT_FOUND) {
DXGI_ADAPTER_DESC desc{};
out_adapter->GetDesc(&desc);
if (desc.VendorId == refIntelVendorID) {
intel_adapter = createCOMPtrGuard(out_adapter);
break;
}
++adapter_index;
}
if (!intel_adapter) {
std::cerr << "No Intel GPU adapter on aboard. Exit" << std::endl;
return -1;
}
std::tie(dx11_dev, dx11_ctx) = create_device_with_ctx(intel_adapter.get());
2022-07-08 16:40:25 +08:00
gpu_accel_device = cv::util::make_optional(
cv::gapi::wip::onevpl::create_dx11_device(
reinterpret_cast<void*>(dx11_dev.get()),
2022-07-08 16:40:25 +08:00
"GPU"));
gpu_accel_ctx = cv::util::make_optional(
cv::gapi::wip::onevpl::create_dx11_context(
reinterpret_cast<void*>(dx11_ctx.get())));
2022-07-08 16:40:25 +08:00
#endif // HAVE_D3D11
#endif // HAVE_DIRECTX
#ifdef __linux__
#if defined(HAVE_VA) || defined(HAVE_VA_INTEL)
static const char *predefined_vaapi_devices_list[] {"/dev/dri/renderD128",
"/dev/dri/renderD129",
"/dev/dri/card0",
"/dev/dri/card1",
nullptr};
std::stringstream ss;
int device_fd = -1;
VADisplay va_handle = nullptr;
for (const char **device_path = predefined_vaapi_devices_list;
*device_path != nullptr; device_path++) {
device_fd = open(*device_path, O_RDWR);
if (device_fd < 0) {
std::string info("Cannot open GPU file: \"");
info = info + *device_path + "\", error: " + strerror(errno);
ss << info << std::endl;
continue;
}
va_handle = vaGetDisplayDRM(device_fd);
if (!va_handle) {
close(device_fd);
std::string info("VAAPI device vaGetDisplayDRM failed, error: ");
info += strerror(errno);
ss << info << std::endl;
continue;
}
int major_version = 0, minor_version = 0;
VAStatus status {};
status = vaInitialize(va_handle, &major_version, &minor_version);
if (VA_STATUS_SUCCESS != status) {
close(device_fd);
va_handle = nullptr;
std::string info("Cannot initialize VAAPI device, error: ");
info += vaErrorStr(status);
ss << info << std::endl;
continue;
}
std::cout << "VAAPI created for device: " << *device_path << ", version: "
<< major_version << "." << minor_version << std::endl;
break;
}
2022-07-08 16:40:25 +08:00
// check device creation
if (!va_handle) {
std::cerr << "Cannot create VAAPI device. Log:\n" << ss.str() << std::endl;
return -1;
}
gpu_accel_device = cv::util::make_optional(
cv::gapi::wip::onevpl::create_vaapi_device(reinterpret_cast<void*>(va_handle),
"GPU", device_fd));
gpu_accel_ctx = cv::util::make_optional(
cv::gapi::wip::onevpl::create_vaapi_context(nullptr));
#endif // defined(HAVE_VA) || defined(HAVE_VA_INTEL)
#endif // #ifdef __linux__
}
2022-07-08 16:40:25 +08:00
#ifdef HAVE_INF_ENGINE
// activate remote ctx in Inference Engine for GPU device
// when other pipeline component use the GPU device too
if (flow_settings->ie_remote_ctx_enable) {
InferenceEngine::ParamMap ctx_config({{"CONTEXT_TYPE", "VA_SHARED"},
2022-07-08 16:40:25 +08:00
{"VA_DEVICE", gpu_accel_device.value().get_ptr()} });
face_net.cfgContextParams(ctx_config);
2022-07-08 16:40:25 +08:00
std::cout << "enforce InferenceEngine remote context on device: " << device_id << std::endl;
// NB: consider NV12 surface because it's one of native GPU image format
face_net.pluginConfig({{"GPU_NV12_TWO_INPUTS", "YES" }});
2022-07-08 16:40:25 +08:00
std::cout << "enforce InferenceEngine NV12 blob" << std::endl;
}
#endif // HAVE_INF_ENGINE
2022-07-08 16:40:25 +08:00
// turn on VPP PreprocesingEngine if available & requested
if (flow_settings->vpl_preproc_enable) {
if (is_gpu(preproc_device)) {
// activate VPP PreprocesingEngine on GPU
face_net.cfgPreprocessingParams(gpu_accel_device.value(),
gpu_accel_ctx.value());
} else {
// activate VPP PreprocesingEngine on CPU
face_net.cfgPreprocessingParams(cpu_accel_device,
cpu_accel_ctx);
}
std::cout << "enforce VPP preprocessing on device: " << preproc_device << std::endl;
} else {
std::cout << "use InferenceEngine default preprocessing" << std::endl;
}
auto kernels = cv::gapi::kernels
< custom::OCVLocateROI
, custom::OCVParseSSD
, custom::OCVBBoxes>();
auto networks = cv::gapi::networks(face_net);
auto face_detection_args = cv::compile_args(networks, kernels);
if (streaming_queue_capacity != 0) {
face_detection_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity });
}
// Create source
cv::gapi::wip::IStreamSource::Ptr cap;
try {
2022-07-08 16:40:25 +08:00
if (is_gpu(source_device)) {
std::cout << "enforce VPL Source deconding on device: " << source_device << std::endl;
// use special 'Device' constructor for `onevpl::GSource`
// put accel type description for VPL source
source_cfgs.push_back(cfg::create_from_string(
"mfxImplDescription.AccelerationMode"
":"
"MFX_ACCEL_MODE_VIA_D3D11"));
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs,
2022-07-08 16:40:25 +08:00
gpu_accel_device.value(),
gpu_accel_ctx.value());
} else {
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs);
}
std::cout << "oneVPL source description: " << cap->descr_of() << std::endl;
} catch (const std::exception& ex) {
std::cerr << "Cannot create source: " << ex.what() << std::endl;
return -1;
}
cv::GMetaArg descr = cap->descr_of();
auto frame_descr = cv::util::get<cv::GFrameDesc>(descr);
cv::GOpaque<cv::Rect> in_roi;
auto inputs = cv::gin(cap);
// Now build the graph
cv::GFrame in;
auto size = cv::gapi::streaming::size(in);
auto graph_inputs = cv::GIn(in);
if (!opt_roi.has_value()) {
// Automatically detect ROI to infer. Make it output parameter
std::cout << "ROI is not set or invalid. Locating it automatically"
<< std::endl;
in_roi = custom::LocateROI::on(size);
} else {
// Use the value provided by user
std::cout << "Will run inference for static region "
<< opt_roi.value()
<< " only"
<< std::endl;
graph_inputs += cv::GIn(in_roi);
inputs += cv::gin(opt_roi.value());
}
auto blob = cv::gapi::infer<custom::FaceDetector>(in_roi, in);
cv::GArray<cv::Rect> rcs = custom::ParseSSD::on(blob, in_roi, size);
auto out_frame = cv::gapi::wip::draw::renderFrame(in, custom::BBoxes::on(rcs, in_roi));
auto out = cv::gapi::streaming::BGR(out_frame);
cv::GStreamingCompiled pipeline = cv::GComputation(std::move(graph_inputs), cv::GOut(out)) // and move here
.compileStreaming(std::move(face_detection_args));
// The execution part
pipeline.setSource(std::move(inputs));
pipeline.start();
size_t frames = 0u;
cv::TickMeter tm;
cv::VideoWriter writer;
if (!output.empty() && !writer.isOpened()) {
const auto sz = cv::Size{frame_descr.size.width, frame_descr.size.height};
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz);
GAPI_Assert(writer.isOpened());
}
cv::Mat outMat;
tm.start();
while (pipeline.pull(cv::gout(outMat))) {
cv::imshow("Out", outMat);
cv::waitKey(1);
if (!output.empty()) {
writer << outMat;
}
++frames;
}
tm.stop();
std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl;
return 0;
}
namespace cfg {
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) {
using namespace cv::gapi::wip;
if (line.empty()) {
throw std::runtime_error("Cannot parse CfgParam from emply line");
}
std::string::size_type name_endline_pos = line.find(':');
if (name_endline_pos == std::string::npos) {
throw std::runtime_error("Cannot parse CfgParam from: " + line +
"\nExpected separator \":\"");
}
std::string name = line.substr(0, name_endline_pos);
std::string value = line.substr(name_endline_pos + 1);
return cv::gapi::wip::onevpl::CfgParam::create(name, value,
/* vpp params strongly optional */
name.find("vpp.") == std::string::npos);
}
}