opencv/doc/tutorials/dnn/dnn_face/dnn_face.markdown

96 lines
4.0 KiB
Markdown
Raw Normal View History

Merge pull request #20422 from fengyuentau:dnn_face Add DNN-based face detection and face recognition into modules/objdetect * Add DNN-based face detector impl and interface * Add a sample for DNN-based face detector * add recog * add notes * move samples from samples/cpp to samples/dnn * add documentation for dnn_face * add set/get methods for input size, nms & score threshold and topk * remove the DNN prefix from the face detector and face recognizer * remove default values in the constructor of impl * regenerate priors after setting input size * two filenames for readnet * Update face.hpp * Update face_recognize.cpp * Update face_match.cpp * Update face.hpp * Update face_recognize.cpp * Update face_match.cpp * Update face_recognize.cpp * Update dnn_face.markdown * Update dnn_face.markdown * Update face.hpp * Update dnn_face.markdown * add regression test for face detection * remove underscore prefix; fix warnings * add reference & acknowledgement for face detection * Update dnn_face.markdown * Update dnn_face.markdown * Update ts.hpp * Update test_face.cpp * Update face_match.cpp * fix a compile error for python interface; add python examples for face detection and recognition * Major changes for Vadim's comments: * Replace class name FaceDetector with FaceDetectorYN in related failes * Declare local mat before loop in modules/objdetect/src/face_detect.cpp * Make input image and save flag optional in samples/dnn/face_detect(.cpp, .py) * Add camera support in samples/dnn/face_detect(.cpp, .py) * correct file paths for regression test * fix convertion warnings; remove extra spaces * update face_recog * Update dnn_face.markdown * Fix warnings and errors for the default CI reports: * Remove trailing white spaces and extra new lines. * Fix convertion warnings for windows and iOS. * Add braces around initialization of subobjects. * Fix warnings and errors for the default CI systems: * Add prefix 'FR_' for each value name in enum DisType to solve the redefinition error for iOS compilation; Modify other code accordingly * Add bookmark '#tutorial_dnn_face' to solve warnings from doxygen * Correct documentations to solve warnings from doxygen * update FaceRecognizerSF * Fix the error for CI to find ONNX models correctly * add suffix f to float assignments * add backend & target options for initializing face recognizer * add checkeq for checking input size and preset size * update test and threshold * changes in response to alalek's comments: * fix typos in samples/dnn/face_match.py * import numpy before importing cv2 * add documentation to .setInputSize() * remove extra include in face_recognize.cpp * fix some bugs * Update dnn_face.markdown * update thresholds; remove useless code * add time suffix to YuNet filename in test * objdetect: update test code
2021-10-09 03:13:49 +08:00
# DNN-based Face Detection And Recognition {#tutorial_dnn_face}
@tableofcontents
@prev_tutorial{tutorial_dnn_text_spotting}
@next_tutorial{pytorch_cls_tutorial_dnn_conversion}
| | |
| -: | :- |
| Original Author | Chengrui Wang, Yuantao Feng |
| Compatibility | OpenCV >= 4.5.1 |
## Introduction
In this section, we introduce the DNN-based module for face detection and face recognition. Models can be obtained in [Models](#Models). The usage of `FaceDetectorYN` and `FaceRecognizerSF` are presented in [Usage](#Usage).
Merge pull request #20422 from fengyuentau:dnn_face Add DNN-based face detection and face recognition into modules/objdetect * Add DNN-based face detector impl and interface * Add a sample for DNN-based face detector * add recog * add notes * move samples from samples/cpp to samples/dnn * add documentation for dnn_face * add set/get methods for input size, nms & score threshold and topk * remove the DNN prefix from the face detector and face recognizer * remove default values in the constructor of impl * regenerate priors after setting input size * two filenames for readnet * Update face.hpp * Update face_recognize.cpp * Update face_match.cpp * Update face.hpp * Update face_recognize.cpp * Update face_match.cpp * Update face_recognize.cpp * Update dnn_face.markdown * Update dnn_face.markdown * Update face.hpp * Update dnn_face.markdown * add regression test for face detection * remove underscore prefix; fix warnings * add reference & acknowledgement for face detection * Update dnn_face.markdown * Update dnn_face.markdown * Update ts.hpp * Update test_face.cpp * Update face_match.cpp * fix a compile error for python interface; add python examples for face detection and recognition * Major changes for Vadim's comments: * Replace class name FaceDetector with FaceDetectorYN in related failes * Declare local mat before loop in modules/objdetect/src/face_detect.cpp * Make input image and save flag optional in samples/dnn/face_detect(.cpp, .py) * Add camera support in samples/dnn/face_detect(.cpp, .py) * correct file paths for regression test * fix convertion warnings; remove extra spaces * update face_recog * Update dnn_face.markdown * Fix warnings and errors for the default CI reports: * Remove trailing white spaces and extra new lines. * Fix convertion warnings for windows and iOS. * Add braces around initialization of subobjects. * Fix warnings and errors for the default CI systems: * Add prefix 'FR_' for each value name in enum DisType to solve the redefinition error for iOS compilation; Modify other code accordingly * Add bookmark '#tutorial_dnn_face' to solve warnings from doxygen * Correct documentations to solve warnings from doxygen * update FaceRecognizerSF * Fix the error for CI to find ONNX models correctly * add suffix f to float assignments * add backend & target options for initializing face recognizer * add checkeq for checking input size and preset size * update test and threshold * changes in response to alalek's comments: * fix typos in samples/dnn/face_match.py * import numpy before importing cv2 * add documentation to .setInputSize() * remove extra include in face_recognize.cpp * fix some bugs * Update dnn_face.markdown * update thresholds; remove useless code * add time suffix to YuNet filename in test * objdetect: update test code
2021-10-09 03:13:49 +08:00
## Models
There are two models (ONNX format) pre-trained and required for this module:
- [Face Detection](https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx):
- Size: 337KB
- Results on WIDER Face Val set: 0.830(easy), 0.824(medium), 0.708(hard)
- [Face Recognition](https://drive.google.com/file/d/1ClK9WiB492c5OZFKveF3XiHCejoOxINW/view?usp=sharing)
- Size: 36.9MB
- Results:
| Database | Accuracy | Threshold (normL2) | Threshold (cosine) |
| -------- | -------- | ------------------ | ------------------ |
| LFW | 99.60% | 1.128 | 0.363 |
| CALFW | 93.95% | 1.149 | 0.340 |
| CPLFW | 91.05% | 1.204 | 0.275 |
| AgeDB-30 | 94.90% | 1.202 | 0.277 |
| CFP-FP | 94.80% | 1.253 | 0.212 |
## Usage
### DNNFaceDetector
```cpp
// Initialize FaceDetectorYN
Ptr<FaceDetectorYN> faceDetector = FaceDetectorYN::create(onnx_path, "", image.size(), score_thresh, nms_thresh, top_k);
// Forward
Mat faces;
faceDetector->detect(image, faces);
```
The detection output `faces` is a two-dimension array of type CV_32F, whose rows are the detected face instances, columns are the location of a face and 5 facial landmarks. The format of each row is as follows:
```
x1, y1, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm
```
, where `x1, y1, w, h` are the top-left coordinates, width and height of the face bounding box, `{x, y}_{re, le, nt, rcm, lcm}` stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively.
### Face Recognition
Following Face Detection, run codes below to extract face feature from facial image.
```cpp
// Initialize FaceRecognizerSF with model path (cv::String)
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(model_path, "");
Merge pull request #20422 from fengyuentau:dnn_face Add DNN-based face detection and face recognition into modules/objdetect * Add DNN-based face detector impl and interface * Add a sample for DNN-based face detector * add recog * add notes * move samples from samples/cpp to samples/dnn * add documentation for dnn_face * add set/get methods for input size, nms & score threshold and topk * remove the DNN prefix from the face detector and face recognizer * remove default values in the constructor of impl * regenerate priors after setting input size * two filenames for readnet * Update face.hpp * Update face_recognize.cpp * Update face_match.cpp * Update face.hpp * Update face_recognize.cpp * Update face_match.cpp * Update face_recognize.cpp * Update dnn_face.markdown * Update dnn_face.markdown * Update face.hpp * Update dnn_face.markdown * add regression test for face detection * remove underscore prefix; fix warnings * add reference & acknowledgement for face detection * Update dnn_face.markdown * Update dnn_face.markdown * Update ts.hpp * Update test_face.cpp * Update face_match.cpp * fix a compile error for python interface; add python examples for face detection and recognition * Major changes for Vadim's comments: * Replace class name FaceDetector with FaceDetectorYN in related failes * Declare local mat before loop in modules/objdetect/src/face_detect.cpp * Make input image and save flag optional in samples/dnn/face_detect(.cpp, .py) * Add camera support in samples/dnn/face_detect(.cpp, .py) * correct file paths for regression test * fix convertion warnings; remove extra spaces * update face_recog * Update dnn_face.markdown * Fix warnings and errors for the default CI reports: * Remove trailing white spaces and extra new lines. * Fix convertion warnings for windows and iOS. * Add braces around initialization of subobjects. * Fix warnings and errors for the default CI systems: * Add prefix 'FR_' for each value name in enum DisType to solve the redefinition error for iOS compilation; Modify other code accordingly * Add bookmark '#tutorial_dnn_face' to solve warnings from doxygen * Correct documentations to solve warnings from doxygen * update FaceRecognizerSF * Fix the error for CI to find ONNX models correctly * add suffix f to float assignments * add backend & target options for initializing face recognizer * add checkeq for checking input size and preset size * update test and threshold * changes in response to alalek's comments: * fix typos in samples/dnn/face_match.py * import numpy before importing cv2 * add documentation to .setInputSize() * remove extra include in face_recognize.cpp * fix some bugs * Update dnn_face.markdown * update thresholds; remove useless code * add time suffix to YuNet filename in test * objdetect: update test code
2021-10-09 03:13:49 +08:00
// Aligning and cropping facial image through the first face of faces detected by dnn_face::DNNFaceDetector
Mat aligned_face;
faceRecognizer->alignCrop(image, faces.row(0), aligned_face);
// Run feature extraction with given aligned_face (cv::Mat)
Mat feature;
faceRecognizer->feature(aligned_face, feature);
feature = feature.clone();
```
After obtaining face features *feature1* and *feature2* of two facial images, run codes below to calculate the identity discrepancy between the two faces.
```cpp
// Calculating the discrepancy between two face features by using cosine distance.
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizer::DisType::COSINE);
// Calculating the discrepancy between two face features by using normL2 distance.
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizer::DisType::NORM_L2);
```
For example, two faces have same identity if the cosine distance is greater than or equal to 0.363, or the normL2 distance is less than or equal to 1.128.
## Reference:
- https://github.com/ShiqiYu/libfacedetection
- https://github.com/ShiqiYu/libfacedetection.train
- https://github.com/zhongyy/SFace
## Acknowledgement
Thanks [Professor Shiqi Yu](https://github.com/ShiqiYu/) and [Yuantao Feng](https://github.com/fengyuentau) for training and providing the face detection model.
Thanks [Professor Deng](http://www.whdeng.cn/), [PhD Candidate Zhong](https://github.com/zhongyy/) and [Master Candidate Wang](https://github.com/crywang/) for training and providing the face recognition model.