opencv/modules/dnn/src/net.cpp

433 lines
11 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "net_impl.hpp"
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
Net::Net()
: impl(makePtr<Net::Impl>())
{
2024-03-01 20:33:11 +08:00
setPreferableBackend(DNN_BACKEND_DEFAULT);
}
Net::~Net()
{
}
int Net::addLayer(const String& name, const String& type, const int& dtype, LayerParams& params)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->addLayer(name, type, dtype, params);
}
int Net::addLayer(const String& name, const String& type, LayerParams& params)
{
CV_TRACE_FUNCTION();
return addLayer(name, type, CV_32F, params);
}
int Net::addLayerToPrev(const String& name, const String& type, const int& dtype, LayerParams& params)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->addLayerToPrev(name, type, dtype, params);
}
int Net::addLayerToPrev(const String& name, const String& type, LayerParams& params)
{
CV_TRACE_FUNCTION();
return addLayerToPrev(name, type, CV_32F, params);
}
void Net::connect(int outLayerId, int outNum, int inpLayerId, int inpNum)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
impl->connect(outLayerId, outNum, inpLayerId, inpNum);
}
void Net::connect(String _outPin, String _inPin)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
LayerPin outPin = impl->getPinByAlias(_outPin);
LayerPin inpPin = impl->getPinByAlias(_inPin);
CV_Assert(outPin.valid() && inpPin.valid());
impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid);
}
int Net::registerOutput(const std::string& outputName, int layerId, int outputPort)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->registerOutput(outputName, layerId, outputPort);
}
Mat Net::forward(const String& outputName)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forward(outputName);
}
AsyncArray Net::forwardAsync(const String& outputName)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forwardAsync(outputName);
}
void Net::forward(OutputArrayOfArrays outputBlobs, const String& outputName)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forward(outputBlobs, outputName);
}
void Net::forward(OutputArrayOfArrays outputBlobs,
const std::vector<String>& outBlobNames)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forward(outputBlobs, outBlobNames);
}
void Net::forward(std::vector<std::vector<Mat>>& outputBlobs,
const std::vector<String>& outBlobNames)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->forward(outputBlobs, outBlobNames);
}
// FIXIT drop from inference API
Net Net::quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype, bool perChannel)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->quantize(*this, calibData, inputsDtype, outputsDtype, perChannel);
}
// FIXIT drop from inference API
void Net::getInputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->getInputDetails(scales, zeropoints);
}
// FIXIT drop from inference API
void Net::getOutputDetails(std::vector<float>& scales, std::vector<int>& zeropoints) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->getOutputDetails(scales, zeropoints);
}
void Net::setPreferableBackend(int backendId)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG(backendId);
CV_Assert(impl);
return impl->setPreferableBackend(*this, backendId);
}
void Net::setPreferableTarget(int targetId)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG(targetId);
CV_Assert(impl);
return impl->setPreferableTarget(targetId);
}
void Net::setInputsNames(const std::vector<String>& inputBlobNames)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->setInputsNames(inputBlobNames);
}
void Net::setInputShape(const String& inputName, const MatShape& shape)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->setInputShape(inputName, shape);
}
void Net::setInput(InputArray blob, const String& name, double scalefactor, const Scalar& mean)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(impl);
return impl->setInput(blob, name, scalefactor, mean);
}
Mat Net::getParam(int layer, int numParam) const
{
CV_Assert(impl);
return impl->getParam(layer, numParam);
}
void Net::setParam(int layer, int numParam, const Mat& blob)
{
CV_Assert(impl);
return impl->setParam(layer, numParam, blob);
}
int Net::getLayerId(const String& layer) const
{
CV_Assert(impl);
return impl->getLayerId(layer);
}
String Net::dump()
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
return impl->dump(true);
}
void Net::dumpToFile(const String& path)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
std::ofstream file(path.c_str());
file << dump();
file.close();
}
Merge pull request #25582 from fengyuentau:dnn/dump_pbtxt Current net exporter `dump` and `dumpToFile` exports the network structure (and its params) to a .dot file which works with `graphviz`. This is hard to use and not friendly to new user. What's worse, the produced picture is not looking pretty. dnn: better net exporter that works with netron #25582 This PR introduces new exporter `dumpToPbtxt` and uses this new exporter by default with environment variable `OPENCV_DNN_NETWORK_DUMP`. It mimics the string output of a onnx model but modified with dnn-specific changes, see below for an example. ![image](https://github.com/opencv/opencv/assets/17219438/0644bed1-da71-4019-8466-88390698e4df) ## Usage Call `cv::dnn::Net::dumpToPbtxt`: ```cpp TEST(DumpNet, dumpToPbtxt) { std::string path = "/path/to/model.onnx"; auto net = readNet(path); Mat input(std::vector<int>{1, 3, 640, 480}, CV_32F); net.setInput(input); net.dumpToPbtxt("yunet.pbtxt"); } ``` Set `export OPENCV_DNN_NETWORK_DUMP=1` ```cpp TEST(DumpNet, env) { std::string path = "/path/to/model.onnx"; auto net = readNet(path); Mat input(std::vector<int>{1, 3, 640, 480}, CV_32F); net.setInput(input); net.forward(); } ``` --- Note: - `pbtxt` is registered as one of the ONNX model suffix in netron. So you can see `module: ai.onnx` and such in the model. - We can get the string output of an ONNX model with the following script ```python import onnx net = onnx.load("/path/to/model.onnx") net_str = str(net) file = open("/path/to/model.pbtxt", "w") file.write(net_str) file.close() ``` ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2024-05-17 16:07:05 +08:00
void Net::dumpToPbtxt(const String& path)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
CV_Assert(!empty());
std::ofstream file(path.c_str());
file << impl->dumpToPbtxt(true);
file.close();
}
Ptr<Layer> Net::getLayer(int layerId) const
{
CV_Assert(impl);
return impl->getLayer(layerId);
}
Ptr<Layer> Net::getLayer(const LayerId& layerId) const
{
CV_Assert(impl);
return impl->getLayer(layerId);
}
std::vector<Ptr<Layer>> Net::getLayerInputs(int layerId) const
{
CV_Assert(impl);
return impl->getLayerInputs(layerId);
}
std::vector<String> Net::getLayerNames() const
{
CV_Assert(impl);
return impl->getLayerNames();
}
bool Net::empty() const
{
CV_Assert(impl);
return impl->empty();
}
// FIXIT drop "unconnected" API
std::vector<int> Net::getUnconnectedOutLayers() const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getUnconnectedOutLayers();
}
// FIXIT drop "unconnected" API
std::vector<String> Net::getUnconnectedOutLayersNames() const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getUnconnectedOutLayersNames();
}
void Net::getLayersShapes(const ShapesVec& netInputShapes,
std::vector<int>& layersIds,
std::vector<ShapesVec>& inLayersShapes,
std::vector<ShapesVec>& outLayersShapes) const
{
CV_Assert(impl);
return impl->getLayersShapes(netInputShapes, layersIds, inLayersShapes, outLayersShapes);
}
void Net::getLayersShapes(const MatShape& netInputShape,
std::vector<int>& layerIds,
std::vector<ShapesVec>& inLayersShapes,
std::vector<ShapesVec>& outLayersShapes) const
{
getLayersShapes(ShapesVec(1, netInputShape),
layerIds, inLayersShapes, outLayersShapes);
}
void Net::getLayerShapes(const MatShape& netInputShape,
const int layerId,
ShapesVec& inLayerShapes,
ShapesVec& outLayerShapes) const
{
getLayerShapes(ShapesVec(1, netInputShape),
layerId, inLayerShapes, outLayerShapes);
}
void Net::getLayerShapes(const ShapesVec& netInputShapes,
const int layerId,
ShapesVec& inLayerShapes,
ShapesVec& outLayerShapes) const
{
CV_Assert(impl);
LayerShapes shapes;
impl->getLayerShapes(netInputShapes, layerId, shapes);
inLayerShapes = shapes.in;
outLayerShapes = shapes.out;
}
int64 Net::getFLOPS(const std::vector<MatShape>& netInputShapes) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getFLOPS(netInputShapes);
}
int64 Net::getFLOPS(const MatShape& netInputShape) const
{
return getFLOPS(std::vector<MatShape>(1, netInputShape));
}
int64 Net::getFLOPS(const int layerId,
const std::vector<MatShape>& netInputShapes) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getFLOPS(layerId, netInputShapes);
}
int64 Net::getFLOPS(const int layerId,
const MatShape& netInputShape) const
{
return getFLOPS(layerId, std::vector<MatShape>(1, netInputShape));
}
void Net::getLayerTypes(std::vector<String>& layersTypes) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getLayerTypes(layersTypes);
}
int Net::getLayersCount(const String& layerType) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getLayersCount(layerType);
}
void Net::getMemoryConsumption(const int layerId,
const std::vector<MatShape>& netInputShapes,
size_t& weights, size_t& blobs) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getMemoryConsumption(layerId, netInputShapes, weights, blobs);
}
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
size_t& weights, size_t& blobs) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getMemoryConsumption(netInputShapes, weights, blobs);
}
void Net::getMemoryConsumption(const int layerId,
const MatShape& netInputShape,
size_t& weights, size_t& blobs) const
{
getMemoryConsumption(layerId, std::vector<MatShape>(1, netInputShape),
weights, blobs);
}
void Net::getMemoryConsumption(const MatShape& netInputShape,
size_t& weights, size_t& blobs) const
{
getMemoryConsumption(std::vector<MatShape>(1, netInputShape),
weights, blobs);
}
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
std::vector<int>& layerIds, std::vector<size_t>& weights,
std::vector<size_t>& blobs) const
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getMemoryConsumption(netInputShapes, layerIds, weights, blobs);
}
void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>& layerIds,
std::vector<size_t>& weights, std::vector<size_t>& blobs) const
{
getMemoryConsumption(std::vector<MatShape>(1, netInputShape), layerIds,
weights, blobs);
}
// FIXIT return old value or add get method
void Net::enableFusion(bool fusion)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->enableFusion(fusion);
}
2022-10-09 09:33:07 +08:00
void Net::enableWinograd(bool useWinograd)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->enableWinograd(useWinograd);
}
void Net::setHalideScheduler(const String& scheduler)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(scheduler, "scheduler", scheduler.c_str());
CV_Assert(impl);
return impl->setHalideScheduler(scheduler);
}
int64 Net::getPerfProfile(std::vector<double>& timings)
{
CV_TRACE_FUNCTION();
CV_Assert(impl);
return impl->getPerfProfile(timings);
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn