opencv/modules/core/src/channels.cpp

475 lines
15 KiB
C++
Raw Normal View History

2018-02-06 20:02:51 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#include "opencl_kernels_core.hpp"
#include "convert.hpp"
/****************************************************************************************\
* Generalized split/merge: mixing channels *
\****************************************************************************************/
namespace cv
{
template<typename T> static void
mixChannels_( const T** src, const int* sdelta,
T** dst, const int* ddelta,
int len, int npairs )
{
int i, k;
for( k = 0; k < npairs; k++ )
{
const T* s = src[k];
T* d = dst[k];
int ds = sdelta[k], dd = ddelta[k];
if( s )
{
for( i = 0; i <= len - 2; i += 2, s += ds*2, d += dd*2 )
{
T t0 = s[0], t1 = s[ds];
d[0] = t0; d[dd] = t1;
}
if( i < len )
d[0] = s[0];
}
else
{
for( i = 0; i <= len - 2; i += 2, d += dd*2 )
d[0] = d[dd] = 0;
if( i < len )
d[0] = 0;
}
}
}
2023-07-20 21:53:57 +08:00
static void mixChannels8u( const void** src, const int* sdelta,
void** dst, const int* ddelta,
2018-02-06 20:02:51 +08:00
int len, int npairs )
{
2023-07-20 21:53:57 +08:00
mixChannels_((const uchar**)src, sdelta, (uchar**)dst, ddelta, len, npairs);
2018-02-06 20:02:51 +08:00
}
2023-07-20 21:53:57 +08:00
static void mixChannels16u( const void** src, const int* sdelta,
void** dst, const int* ddelta,
2018-02-06 20:02:51 +08:00
int len, int npairs )
{
mixChannels_((const ushort**)src, sdelta, (ushort**)dst, ddelta, len, npairs);
2018-02-06 20:02:51 +08:00
}
2023-07-20 21:53:57 +08:00
static void mixChannels32s( const void** src, const int* sdelta,
void** dst, const int* ddelta,
2018-02-06 20:02:51 +08:00
int len, int npairs )
{
mixChannels_((const int**)src, sdelta, (int**)dst, ddelta, len, npairs);
2018-02-06 20:02:51 +08:00
}
2023-07-20 21:53:57 +08:00
static void mixChannels64s( const void** src, const int* sdelta,
void** dst, const int* ddelta,
2018-02-06 20:02:51 +08:00
int len, int npairs )
{
mixChannels_((const int64**)src, sdelta, (int64**)dst, ddelta, len, npairs);
2018-02-06 20:02:51 +08:00
}
2023-07-20 21:53:57 +08:00
typedef void (*MixChannelsFunc)( const void** src, const int* sdelta,
void** dst, const int* ddelta, int len, int npairs );
2018-02-06 20:02:51 +08:00
static MixChannelsFunc getMixchFunc(int depth)
{
static MixChannelsFunc mixchTab[CV_DEPTH_MAX] =
2018-02-06 20:02:51 +08:00
{
mixChannels8u, mixChannels8u, mixChannels16u,
mixChannels16u, mixChannels32s, mixChannels32s,
mixChannels64s, mixChannels16u, mixChannels16u,
mixChannels8u, mixChannels64s, mixChannels64s,
mixChannels32s, 0
2018-02-06 20:02:51 +08:00
};
return mixchTab[depth];
}
} // cv::
void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs )
{
CV_INSTRUMENT_REGION();
2018-02-06 20:02:51 +08:00
if( npairs == 0 )
return;
CV_Assert( src && nsrcs > 0 && dst && ndsts > 0 && fromTo && npairs > 0 );
size_t i, j, k, esz1 = dst[0].elemSize1();
int depth = dst[0].depth();
AutoBuffer<uchar> buf((nsrcs + ndsts + 1)*(sizeof(Mat*) + sizeof(uchar*)) + npairs*(sizeof(uchar*)*2 + sizeof(int)*6));
2018-06-11 06:42:00 +08:00
const Mat** arrays = (const Mat**)(uchar*)buf.data();
2018-02-06 20:02:51 +08:00
uchar** ptrs = (uchar**)(arrays + nsrcs + ndsts);
const uchar** srcs = (const uchar**)(ptrs + nsrcs + ndsts + 1);
uchar** dsts = (uchar**)(srcs + npairs);
int* tab = (int*)(dsts + npairs);
int *sdelta = (int*)(tab + npairs*4), *ddelta = sdelta + npairs;
for( i = 0; i < nsrcs; i++ )
arrays[i] = &src[i];
for( i = 0; i < ndsts; i++ )
arrays[i + nsrcs] = &dst[i];
ptrs[nsrcs + ndsts] = 0;
for( i = 0; i < npairs; i++ )
{
int i0 = fromTo[i*2], i1 = fromTo[i*2+1];
if( i0 >= 0 )
{
for( j = 0; j < nsrcs; i0 -= src[j].channels(), j++ )
if( i0 < src[j].channels() )
break;
CV_Assert(j < nsrcs && src[j].depth() == depth);
tab[i*4] = (int)j; tab[i*4+1] = (int)(i0*esz1);
sdelta[i] = src[j].channels();
}
else
{
tab[i*4] = (int)(nsrcs + ndsts); tab[i*4+1] = 0;
sdelta[i] = 0;
}
for( j = 0; j < ndsts; i1 -= dst[j].channels(), j++ )
if( i1 < dst[j].channels() )
break;
CV_Assert(i1 >= 0 && j < ndsts && dst[j].depth() == depth);
tab[i*4+2] = (int)(j + nsrcs); tab[i*4+3] = (int)(i1*esz1);
ddelta[i] = dst[j].channels();
}
NAryMatIterator it(arrays, ptrs, (int)(nsrcs + ndsts));
int total = (int)it.size, blocksize = std::min(total, (int)((BLOCK_SIZE + esz1-1)/esz1));
MixChannelsFunc func = getMixchFunc(depth);
CV_Assert(func);
2018-02-06 20:02:51 +08:00
for( i = 0; i < it.nplanes; i++, ++it )
{
for( k = 0; k < npairs; k++ )
{
srcs[k] = ptrs[tab[k*4]] + tab[k*4+1];
dsts[k] = ptrs[tab[k*4+2]] + tab[k*4+3];
}
for( int t = 0; t < total; t += blocksize )
{
int bsz = std::min(total - t, blocksize);
2023-07-20 21:53:57 +08:00
func( (const void**)srcs, sdelta, (void **)dsts, ddelta, bsz, (int)npairs );
2018-02-06 20:02:51 +08:00
if( t + blocksize < total )
for( k = 0; k < npairs; k++ )
{
srcs[k] += blocksize*sdelta[k]*esz1;
dsts[k] += blocksize*ddelta[k]*esz1;
}
}
}
}
#ifdef HAVE_OPENCL
namespace cv {
static void getUMatIndex(const std::vector<UMat> & um, int cn, int & idx, int & cnidx)
{
int totalChannels = 0;
for (size_t i = 0, size = um.size(); i < size; ++i)
{
int ccn = um[i].channels();
totalChannels += ccn;
if (totalChannels == cn)
{
idx = (int)(i + 1);
cnidx = 0;
return;
}
else if (totalChannels > cn)
{
idx = (int)i;
cnidx = i == 0 ? cn : (cn - totalChannels + ccn);
return;
}
}
idx = cnidx = -1;
}
static bool ocl_mixChannels(InputArrayOfArrays _src, InputOutputArrayOfArrays _dst,
const int* fromTo, size_t npairs)
{
std::vector<UMat> src, dst;
_src.getUMatVector(src);
_dst.getUMatVector(dst);
size_t nsrc = src.size(), ndst = dst.size();
CV_Assert(nsrc > 0 && ndst > 0);
Size size = src[0].size();
int depth = src[0].depth(), esz = CV_ELEM_SIZE(depth),
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
for (size_t i = 1, ssize = src.size(); i < ssize; ++i)
CV_Assert(src[i].size() == size && src[i].depth() == depth);
for (size_t i = 0, dsize = dst.size(); i < dsize; ++i)
CV_Assert(dst[i].size() == size && dst[i].depth() == depth);
String declsrc, decldst, declproc, declcn, indexdecl;
std::vector<UMat> srcargs(npairs), dstargs(npairs);
for (size_t i = 0; i < npairs; ++i)
{
int scn = fromTo[i<<1], dcn = fromTo[(i<<1) + 1];
int src_idx, src_cnidx, dst_idx, dst_cnidx;
getUMatIndex(src, scn, src_idx, src_cnidx);
getUMatIndex(dst, dcn, dst_idx, dst_cnidx);
CV_Assert(dst_idx >= 0 && src_idx >= 0);
srcargs[i] = src[src_idx];
srcargs[i].offset += src_cnidx * esz;
dstargs[i] = dst[dst_idx];
dstargs[i].offset += dst_cnidx * esz;
declsrc += format("DECLARE_INPUT_MAT(%zu)", i);
decldst += format("DECLARE_OUTPUT_MAT(%zu)", i);
indexdecl += format("DECLARE_INDEX(%zu)", i);
declproc += format("PROCESS_ELEM(%zu)", i);
declcn += format(" -D scn%zu=%d -D dcn%zu=%d", i, src[src_idx].channels(), i, dst[dst_idx].channels());
2018-02-06 20:02:51 +08:00
}
ocl::Kernel k("mixChannels", ocl::core::mixchannels_oclsrc,
format("-D T=%s -D DECLARE_INPUT_MAT_N=%s -D DECLARE_OUTPUT_MAT_N=%s"
" -D PROCESS_ELEM_N=%s -D DECLARE_INDEX_N=%s%s",
ocl::memopTypeToStr(depth), declsrc.c_str(), decldst.c_str(),
declproc.c_str(), indexdecl.c_str(), declcn.c_str()));
if (k.empty())
return false;
int argindex = 0;
for (size_t i = 0; i < npairs; ++i)
argindex = k.set(argindex, ocl::KernelArg::ReadOnlyNoSize(srcargs[i]));
for (size_t i = 0; i < npairs; ++i)
argindex = k.set(argindex, ocl::KernelArg::WriteOnlyNoSize(dstargs[i]));
argindex = k.set(argindex, size.height);
argindex = k.set(argindex, size.width);
k.set(argindex, rowsPerWI);
size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
}
#endif
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const int* fromTo, size_t npairs)
{
CV_INSTRUMENT_REGION();
2018-02-06 20:02:51 +08:00
if (npairs == 0 || fromTo == NULL)
return;
CV_OCL_RUN(dst.isUMatVector(),
ocl_mixChannels(src, dst, fromTo, npairs))
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT &&
src.kind() != _InputArray::STD_ARRAY_MAT &&
src.kind() != _InputArray::STD_VECTOR_VECTOR &&
src.kind() != _InputArray::STD_VECTOR_UMAT;
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT &&
dst.kind() != _InputArray::STD_ARRAY_MAT &&
dst.kind() != _InputArray::STD_VECTOR_VECTOR &&
dst.kind() != _InputArray::STD_VECTOR_UMAT;
int i;
int nsrc = src_is_mat ? 1 : (int)src.total();
int ndst = dst_is_mat ? 1 : (int)dst.total();
CV_Assert(nsrc > 0 && ndst > 0);
cv::AutoBuffer<Mat> _buf(nsrc + ndst);
2018-06-11 06:42:00 +08:00
Mat* buf = _buf.data();
2018-02-06 20:02:51 +08:00
for( i = 0; i < nsrc; i++ )
buf[i] = src.getMat(src_is_mat ? -1 : i);
for( i = 0; i < ndst; i++ )
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i);
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, fromTo, npairs);
}
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
const std::vector<int>& fromTo)
{
CV_INSTRUMENT_REGION();
2018-02-06 20:02:51 +08:00
if (fromTo.empty())
return;
CV_OCL_RUN(dst.isUMatVector(),
ocl_mixChannels(src, dst, &fromTo[0], fromTo.size()>>1))
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT &&
src.kind() != _InputArray::STD_ARRAY_MAT &&
src.kind() != _InputArray::STD_VECTOR_VECTOR &&
src.kind() != _InputArray::STD_VECTOR_UMAT;
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT &&
dst.kind() != _InputArray::STD_ARRAY_MAT &&
dst.kind() != _InputArray::STD_VECTOR_VECTOR &&
dst.kind() != _InputArray::STD_VECTOR_UMAT;
int i;
int nsrc = src_is_mat ? 1 : (int)src.total();
int ndst = dst_is_mat ? 1 : (int)dst.total();
CV_Assert(fromTo.size()%2 == 0 && nsrc > 0 && ndst > 0);
cv::AutoBuffer<Mat> _buf(nsrc + ndst);
2018-06-11 06:42:00 +08:00
Mat* buf = _buf.data();
2018-02-06 20:02:51 +08:00
for( i = 0; i < nsrc; i++ )
buf[i] = src.getMat(src_is_mat ? -1 : i);
for( i = 0; i < ndst; i++ )
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i);
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, &fromTo[0], fromTo.size()/2);
}
#ifdef HAVE_IPP
namespace cv
{
static bool ipp_extractChannel(const Mat &src, Mat &dst, int channel)
{
#ifdef HAVE_IPP_IW_LL
CV_INSTRUMENT_REGION_IPP();
2018-02-06 20:02:51 +08:00
int srcChannels = src.channels();
int dstChannels = dst.channels();
if(src.dims != dst.dims)
return false;
if(src.dims <= 2)
{
IppiSize size = ippiSize(src.size());
return CV_INSTRUMENT_FUN_IPP(llwiCopyChannel, src.ptr(), (int)src.step, srcChannels, channel, dst.ptr(), (int)dst.step, dstChannels, 0, size, (int)src.elemSize1()) >= 0;
}
else
{
const Mat *arrays[] = {&dst, NULL};
uchar *ptrs[2] = {NULL};
NAryMatIterator it(arrays, ptrs);
IppiSize size = {(int)it.size, 1};
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
if(CV_INSTRUMENT_FUN_IPP(llwiCopyChannel, ptrs[0], 0, srcChannels, channel, ptrs[1], 0, dstChannels, 0, size, (int)src.elemSize1()) < 0)
return false;
}
return true;
}
#else
CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(channel);
return false;
#endif
}
static bool ipp_insertChannel(const Mat &src, Mat &dst, int channel)
{
#ifdef HAVE_IPP_IW_LL
CV_INSTRUMENT_REGION_IPP();
2018-02-06 20:02:51 +08:00
int srcChannels = src.channels();
int dstChannels = dst.channels();
if(src.dims != dst.dims)
return false;
if(src.dims <= 2)
{
IppiSize size = ippiSize(src.size());
return CV_INSTRUMENT_FUN_IPP(llwiCopyChannel, src.ptr(), (int)src.step, srcChannels, 0, dst.ptr(), (int)dst.step, dstChannels, channel, size, (int)src.elemSize1()) >= 0;
}
else
{
const Mat *arrays[] = {&dst, NULL};
uchar *ptrs[2] = {NULL};
NAryMatIterator it(arrays, ptrs);
IppiSize size = {(int)it.size, 1};
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
if(CV_INSTRUMENT_FUN_IPP(llwiCopyChannel, ptrs[0], 0, srcChannels, 0, ptrs[1], 0, dstChannels, channel, size, (int)src.elemSize1()) < 0)
return false;
}
return true;
}
#else
CV_UNUSED(src); CV_UNUSED(dst); CV_UNUSED(channel);
return false;
#endif
}
}
#endif
void cv::extractChannel(InputArray _src, OutputArray _dst, int coi)
{
CV_INSTRUMENT_REGION();
2018-02-06 20:02:51 +08:00
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_Assert( 0 <= coi && coi < cn );
int ch[] = { coi, 0 };
_dst.createSameSize(_src, depth);
2018-02-06 20:02:51 +08:00
#ifdef HAVE_OPENCL
if (ocl::isOpenCLActivated() && _src.dims() <= 2 && _dst.isUMat())
{
UMat src = _src.getUMat();
UMat dst = _dst.getUMat();
mixChannels(std::vector<UMat>(1, src), std::vector<UMat>(1, dst), ch, 1);
return;
}
#endif
Mat src = _src.getMat();
Mat dst = _dst.getMat();
CV_IPP_RUN_FAST(ipp_extractChannel(src, dst, coi))
mixChannels(&src, 1, &dst, 1, ch, 1);
}
void cv::insertChannel(InputArray _src, InputOutputArray _dst, int coi)
{
CV_INSTRUMENT_REGION();
2018-02-06 20:02:51 +08:00
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), scn = CV_MAT_CN(stype);
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), dcn = CV_MAT_CN(dtype);
CV_Assert( _src.sameSize(_dst) && sdepth == ddepth );
CV_Assert( 0 <= coi && coi < dcn && scn == 1 );
int ch[] = { 0, coi };
#ifdef HAVE_OPENCL
if (ocl::isOpenCLActivated() && _src.dims() <= 2 && _dst.isUMat())
{
UMat src = _src.getUMat(), dst = _dst.getUMat();
mixChannels(std::vector<UMat>(1, src), std::vector<UMat>(1, dst), ch, 1);
return;
}
#endif
Mat src = _src.getMat(), dst = _dst.getMat();
CV_IPP_RUN_FAST(ipp_insertChannel(src, dst, coi))
mixChannels(&src, 1, &dst, 1, ch, 1);
}