mirror of
https://github.com/opencv/opencv.git
synced 2025-01-11 23:18:11 +08:00
97 lines
2.6 KiB
C++
97 lines
2.6 KiB
C++
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
// Copyright (C) 2016, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
|
||
|
/*
|
||
|
Implementation of shift layer, which adds up const values to blob.
|
||
|
*/
|
||
|
|
||
|
#include "../precomp.hpp"
|
||
|
#include <opencv2/dnn/shape_utils.hpp>
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
namespace dnn
|
||
|
{
|
||
|
|
||
|
class ShiftLayerImpl : public ShiftLayer
|
||
|
{
|
||
|
public:
|
||
|
ShiftLayerImpl(const LayerParams ¶ms)
|
||
|
{
|
||
|
setParamsFrom(params);
|
||
|
CV_Assert(blobs.size() == 1);
|
||
|
}
|
||
|
|
||
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||
|
const int requiredOutputs,
|
||
|
std::vector<MatShape> &outputs,
|
||
|
std::vector<MatShape> &internals) const
|
||
|
{
|
||
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
||
|
internals.assign(1, shape(1, total(inputs[0], 2)));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
||
|
{
|
||
|
CV_Assert(inputs.size() > 0);
|
||
|
CV_Assert(blobs.size() > 0);
|
||
|
|
||
|
if(inputs[0]->dims == blobs[0].dims)
|
||
|
{
|
||
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
||
|
{
|
||
|
Mat &inpBlob = *inputs[ii];
|
||
|
Mat &outBlob = outputs[ii];
|
||
|
|
||
|
outBlob = inpBlob + blobs[0];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Mat biasOnesMat = internals[0];
|
||
|
biasOnesMat.setTo(1);
|
||
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
||
|
{
|
||
|
Mat &inpBlob = *inputs[ii];
|
||
|
Mat &outBlob = outputs[ii];
|
||
|
|
||
|
inpBlob.copyTo(outBlob);
|
||
|
|
||
|
for (int n = 0; n < inpBlob.size[0]; n++)
|
||
|
{
|
||
|
Mat dstMat(inpBlob.size[1], inpBlob.size[2] * inpBlob.size[3],
|
||
|
outBlob.type(), outBlob.ptr(n));
|
||
|
gemm(blobs[0], biasOnesMat, 1, dstMat, 1, dstMat); //TODO: gemv
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||
|
const std::vector<MatShape> &outputs) const
|
||
|
{
|
||
|
(void)outputs; // suppress unused variable warning
|
||
|
long flops = 0;
|
||
|
|
||
|
for(int i= 0; i < inputs.size(); i++)
|
||
|
{
|
||
|
flops += total(inputs[i]);
|
||
|
}
|
||
|
|
||
|
return flops;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
Ptr<ShiftLayer> ShiftLayer::create(const LayerParams& params)
|
||
|
{
|
||
|
return Ptr<ShiftLayer>(new ShiftLayerImpl(params));
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|