opencv/modules/dnn/src/layers/softmax_layer.cpp

215 lines
7.6 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "op_halide.hpp"
#include <algorithm>
#include <stdlib.h>
using std::max;
namespace cv
{
namespace dnn
{
class SoftMaxLayerImpl : public SoftmaxLayer
{
public:
SoftMaxLayerImpl(const LayerParams& params)
{
axisRaw = params.get<int>("axis", 1);
logSoftMax = params.get<int>("log_softmax", false);
setParamsFrom(params);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
MatShape shape = inputs[0];
int cAxis = clamp(axisRaw, shape.size());
shape[cAxis] = 1;
internals.assign(1, shape);
return inplace;
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1;
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
const Mat &src = *inputs[0];
Mat &dst = outputs[0];
int axis = clamp(axisRaw, src.dims);
size_t outerSize = src.total(0, axis), channels = src.size[axis],
innerSize = src.total(axis + 1);
CV_Assert(src.type() == CV_32F);
CV_Assert(src.isContinuous() && dst.isContinuous());
const float *srcPtr = src.ptr<float>();
float *dstPtr = dst.ptr<float>();
float *bufPtr = internals[0].ptr<float>();
size_t outerStep = src.total(axis);
size_t cnStep = src.total(axis + 1);
//compute max along axis
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float));
for (size_t cnDim = 1; cnDim < channels; cnDim++)
{
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]);
}
}
//subtract max
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
for (size_t i = 0; i < innerSize; i++)
dstPtr[srcOffset + cnDim * cnStep + i] = srcPtr[srcOffset + cnDim * cnStep + i] - bufPtr[bufOffset + i];
}
}
cv::exp(dst, dst);
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
{
size_t srcOffset = outerDim * outerStep;
size_t bufOffset = outerDim * cnStep;
//sum exp along axis
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] = 0.f;
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
for (size_t i = 0; i < innerSize; i++)
bufPtr[bufOffset + i] += dstPtr[srcOffset + cnDim * cnStep + i];
}
//divide by computed sum
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
for (size_t i = 0; i < innerSize; i++)
dstPtr[srcOffset + cnDim * cnStep + i] /= bufPtr[bufOffset + i];
}
if (logSoftMax)
{
for (size_t cnDim = 0; cnDim < channels; cnDim++)
{
for (size_t i = 0; i < innerSize; i++)
dstPtr[srcOffset + cnDim * cnStep + i] = log(dstPtr[srcOffset + cnDim * cnStep + i]);
}
}
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
int inW, inH, inC, inN;
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
if (inW != 1 || inH != 1)
CV_Error(cv::Error::StsNotImplemented,
"Halide backend for SoftMax with spatial size "
"more than 1x1 is not implemented");
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func expInput("expInput");
Halide::RDom r(0, inW, 0, inH, 0, inC);
expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n));
Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n));
top(x, y, c, n) = expInput(x, y, c, n) / globalSum;
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const
{
(void)outputs; // suppress unused variable warning
int64 flops = 0;
for (int i = 0; i < inputs.size(); i++)
{
flops += 4*total(inputs[i]);
}
return flops;
}
int axisRaw;
};
Ptr<SoftmaxLayer> SoftmaxLayer::create(const LayerParams& params)
{
return Ptr<SoftmaxLayer>(new SoftMaxLayerImpl(params));
}
}
}