2017-06-26 18:35:51 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
2017-06-28 16:15:22 +08:00
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
2017-06-26 18:35:51 +08:00
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#include "layers_common.hpp"
|
|
|
|
#include "op_halide.hpp"
|
|
|
|
#include <algorithm>
|
|
|
|
#include <stdlib.h>
|
|
|
|
using std::max;
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace dnn
|
|
|
|
{
|
|
|
|
|
|
|
|
class SoftMaxLayerImpl : public SoftmaxLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
SoftMaxLayerImpl(const LayerParams& params)
|
|
|
|
{
|
|
|
|
axisRaw = params.get<int>("axis", 1);
|
|
|
|
logSoftMax = params.get<int>("log_softmax", false);
|
|
|
|
setParamsFrom(params);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const
|
|
|
|
{
|
|
|
|
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
|
|
MatShape shape = inputs[0];
|
|
|
|
int cAxis = clamp(axisRaw, shape.size());
|
|
|
|
shape[cAxis] = 1;
|
|
|
|
internals.assign(1, shape);
|
|
|
|
return inplace;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
|
|
{
|
|
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
|
|
backendId == DNN_BACKEND_HALIDE && haveHalide() && axisRaw == 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
|
|
{
|
|
|
|
const Mat &src = *inputs[0];
|
|
|
|
Mat &dst = outputs[0];
|
|
|
|
|
|
|
|
int axis = clamp(axisRaw, src.dims);
|
|
|
|
size_t outerSize = src.total(0, axis), channels = src.size[axis],
|
|
|
|
innerSize = src.total(axis + 1);
|
|
|
|
|
|
|
|
CV_Assert(src.type() == CV_32F);
|
|
|
|
CV_Assert(src.isContinuous() && dst.isContinuous());
|
|
|
|
|
|
|
|
const float *srcPtr = src.ptr<float>();
|
|
|
|
float *dstPtr = dst.ptr<float>();
|
|
|
|
float *bufPtr = internals[0].ptr<float>();
|
|
|
|
|
|
|
|
size_t outerStep = src.total(axis);
|
|
|
|
size_t cnStep = src.total(axis + 1);
|
|
|
|
|
|
|
|
//compute max along axis
|
|
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
|
|
{
|
|
|
|
size_t srcOffset = outerDim * outerStep;
|
|
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
|
|
|
|
memcpy(bufPtr + bufOffset, srcPtr + srcOffset, innerSize * sizeof(float));
|
|
|
|
|
|
|
|
for (size_t cnDim = 1; cnDim < channels; cnDim++)
|
|
|
|
{
|
|
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
|
|
bufPtr[bufOffset + i] = std::max(bufPtr[bufOffset + i], srcPtr[srcOffset + cnDim * cnStep + i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//subtract max
|
|
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
|
|
{
|
|
|
|
size_t srcOffset = outerDim * outerStep;
|
|
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
|
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
|
|
{
|
|
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
|
|
dstPtr[srcOffset + cnDim * cnStep + i] = srcPtr[srcOffset + cnDim * cnStep + i] - bufPtr[bufOffset + i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::exp(dst, dst);
|
|
|
|
|
|
|
|
for (size_t outerDim = 0; outerDim < outerSize; outerDim++)
|
|
|
|
{
|
|
|
|
size_t srcOffset = outerDim * outerStep;
|
|
|
|
size_t bufOffset = outerDim * cnStep;
|
|
|
|
|
|
|
|
//sum exp along axis
|
|
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
|
|
bufPtr[bufOffset + i] = 0.f;
|
|
|
|
|
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
|
|
{
|
|
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
|
|
bufPtr[bufOffset + i] += dstPtr[srcOffset + cnDim * cnStep + i];
|
|
|
|
}
|
|
|
|
|
|
|
|
//divide by computed sum
|
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
|
|
{
|
|
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
|
|
dstPtr[srcOffset + cnDim * cnStep + i] /= bufPtr[bufOffset + i];
|
|
|
|
}
|
|
|
|
if (logSoftMax)
|
|
|
|
{
|
|
|
|
for (size_t cnDim = 0; cnDim < channels; cnDim++)
|
|
|
|
{
|
|
|
|
for (size_t i = 0; i < innerSize; i++)
|
|
|
|
dstPtr[srcOffset + cnDim * cnStep + i] = log(dstPtr[srcOffset + cnDim * cnStep + i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
|
|
|
|
{
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
int inW, inH, inC, inN;
|
|
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
|
|
|
|
|
|
|
if (inW != 1 || inH != 1)
|
|
|
|
CV_Error(cv::Error::StsNotImplemented,
|
|
|
|
"Halide backend for SoftMax with spatial size "
|
|
|
|
"more than 1x1 is not implemented");
|
|
|
|
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
|
|
|
|
|
|
Halide::Func expInput("expInput");
|
|
|
|
Halide::RDom r(0, inW, 0, inH, 0, inC);
|
|
|
|
expInput(x, y, c, n) = exp(inputBuffer(x, y, c, n));
|
|
|
|
Halide::Expr globalSum = sum(expInput(r.x, r.y, r.z, n));
|
|
|
|
top(x, y, c, n) = expInput(x, y, c, n) / globalSum;
|
|
|
|
return Ptr<BackendNode>(new HalideBackendNode(top));
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
|
|
|
int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
|
|
const std::vector<MatShape> &outputs) const
|
|
|
|
{
|
|
|
|
(void)outputs; // suppress unused variable warning
|
|
|
|
int64 flops = 0;
|
|
|
|
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
flops += 4*total(inputs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return flops;
|
|
|
|
}
|
|
|
|
|
|
|
|
int axisRaw;
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<SoftmaxLayer> SoftmaxLayer::create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<SoftmaxLayer>(new SoftMaxLayerImpl(params));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|