opencv/modules/gpu/src/cuda/constantspacebp.cu

814 lines
35 KiB
Plaintext
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/devmem2d.hpp"
#include "saturate_cast.hpp"
#include "safe_call.hpp"
using namespace cv::gpu;
using namespace cv::gpu::impl;
#ifndef FLT_MAX
#define FLT_MAX 3.402823466e+38F
#endif
#ifndef SHRT_MAX
#define SHRT_MAX 32767
#endif
template <typename T>
struct TypeLimits {};
template <>
struct TypeLimits<short>
{
static __device__ short max() {return SHRT_MAX;}
};
template <>
struct TypeLimits<float>
{
static __device__ float max() {return FLT_MAX;}
};
///////////////////////////////////////////////////////////////
/////////////////////// load constants ////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
__constant__ int cndisp;
__constant__ float cmax_data_term;
__constant__ float cdata_weight;
__constant__ float cmax_disc_term;
__constant__ float cdisc_single_jump;
__constant__ size_t cimg_step;
__constant__ size_t cmsg_step1;
__constant__ size_t cmsg_step2;
__constant__ size_t cdisp_step1;
__constant__ size_t cdisp_step2;
__constant__ uchar* cleft;
__constant__ uchar* cright;
__constant__ uchar* ctemp1;
__constant__ uchar* ctemp2;
}
namespace cv { namespace gpu { namespace csbp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp1, const DevMem2D& temp2)
{
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cndisp, &ndisp, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_data_term, &max_data_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdata_weight, &data_weight, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_disc_term, &max_disc_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisc_single_jump, &disc_single_jump, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cimg_step, &left.step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cleft, &left.ptr, sizeof(left.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cright, &right.ptr, sizeof(right.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp1, &temp1.ptr, sizeof(temp1.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp2, &temp2.ptr, sizeof(temp2.ptr)) );
}
}}}
///////////////////////////////////////////////////////////////
/////////////////////// init data cost ////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <int channels>
struct DataCostPerPixel
{
static __device__ float compute(const uchar* left, const uchar* right)
{
float tb = 0.114f * abs((int)left[0] - right[0]);
float tg = 0.587f * abs((int)left[1] - right[1]);
float tr = 0.299f * abs((int)left[2] - right[2]);
return fmin(cdata_weight * (tr + tg + tb), cdata_weight * cmax_data_term);
}
};
template <>
struct DataCostPerPixel<1>
{
static __device__ float compute(const uchar* left, const uchar* right)
{
return fmin(cdata_weight * abs((int)*left - *right), cdata_weight * cmax_data_term);
}
};
template <typename T>
__global__ void get_first_k_initial_local(T* data_cost_selected_, T* selected_disp_pyr, int h, int w, int nr_plane)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < h && x < w)
{
T* selected_disparity = selected_disp_pyr + y * cmsg_step1 + x;
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x;
T* data_cost = (T*)ctemp1 + y * cmsg_step1 + x;
int nr_local_minimum = 0;
T prev = data_cost[0 * cdisp_step1];
T cur = data_cost[1 * cdisp_step1];
T next = data_cost[2 * cdisp_step1];
for (int d = 1; d < cndisp - 1 && nr_local_minimum < nr_plane; d++)
{
if (cur < prev && cur < next)
{
data_cost_selected[nr_local_minimum * cdisp_step1] = cur;
selected_disparity[nr_local_minimum * cdisp_step1] = d;
data_cost[d * cdisp_step1] = TypeLimits<T>::max();
nr_local_minimum++;
}
prev = cur;
cur = next;
next = data_cost[(d + 1) * cdisp_step1];
}
for (int i = nr_local_minimum; i < nr_plane; i++)
{
T minimum = TypeLimits<T>::max();
int id = 0;
for (int d = 0; d < cndisp; d++)
{
cur = data_cost[d * cdisp_step1];
if (cur < minimum)
{
minimum = cur;
id = d;
}
}
data_cost_selected[i * cdisp_step1] = minimum;
selected_disparity[i * cdisp_step1] = id;
data_cost[id * cdisp_step1] = TypeLimits<T>::max();
}
}
}
template <typename T, int winsz, int channels>
__global__ void data_init(int level, int rows, int cols, int h)
{
int x_out = blockIdx.x;
int y_out = blockIdx.y % h;
int d = (blockIdx.y / h) * blockDim.z + threadIdx.z;
int tid = threadIdx.x;
if (d < cndisp)
{
int x0 = x_out << level;
int y0 = y_out << level;
int len = min(y0 + winsz, rows) - y0;
float val = 0.0f;
if (x0 + tid < cols)
{
if (x0 + tid - d < 0)
val = cdata_weight * cmax_data_term * len;
else
{
const uchar* lle = cleft + y0 * cimg_step + channels * (x0 + tid );
const uchar* lri = cright + y0 * cimg_step + channels * (x0 + tid - d);
for(int y = 0; y < len; ++y)
{
val += DataCostPerPixel<channels>::compute(lle, lri);
lle += cimg_step;
lri += cimg_step;
}
}
}
extern __shared__ float smem[];
float* dline = smem + winsz * threadIdx.z;
dline[tid] = val;
__syncthreads();
if (winsz >= 256) { if (tid < 128) { dline[tid] += dline[tid + 128]; } __syncthreads(); }
if (winsz >= 128) { if (tid < 64) { dline[tid] += dline[tid + 64]; } __syncthreads(); }
if (winsz >= 64) if (tid < 32) dline[tid] += dline[tid + 32];
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16];
if (winsz >= 16) if (tid < 8) dline[tid] += dline[tid + 8];
if (winsz >= 8) if (tid < 4) dline[tid] += dline[tid + 4];
if (winsz >= 4) if (tid < 2) dline[tid] += dline[tid + 2];
if (winsz >= 2) if (tid < 1) dline[tid] += dline[tid + 1];
T* data_cost = (T*)ctemp1 + y_out * cmsg_step1 + x_out;
if (tid == 0)
data_cost[cdisp_step1 * d] = saturate_cast<T>(dline[0]);
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T, int winsz>
void data_init_caller(int rows, int cols, int h, int w, int level, int ndisp, int channels, const cudaStream_t& stream)
{
const int threadsNum = 256;
const size_t smem_size = threadsNum * sizeof(float);
2010-08-12 21:47:53 +08:00
dim3 threads(winsz, 1, threadsNum / winsz);
dim3 grid(w, h, 1);
grid.y *= divUp(ndisp, threads.z);
switch (channels)
{
case 1: csbp_kernels::data_init<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
case 3: csbp_kernels::data_init<T, winsz, 3><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
2010-08-12 21:47:53 +08:00
}
}
typedef void (*DataInitCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, const cudaStream_t& stream);
template <typename T>
void get_first_k_initial_local_caller(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
csbp_kernels::get_first_k_initial_local<T><<<grid, threads, 0, stream>>>((T*)data_cost_selected.ptr, (T*)disp_selected_pyr.ptr, h, w, nr_plane);
}
typedef void (*GetFirstKInitialLocalCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream);
void init_data_cost(int rows, int cols, const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected,
size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels, const cudaStream_t& stream)
{
static const DataInitCaller data_init_callers[8][9] =
{
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{data_init_caller<short, 1>, data_init_caller<short, 2>, data_init_caller<short, 4>, data_init_caller<short, 8>,
data_init_caller<short, 16>, data_init_caller<short, 32>, data_init_caller<short, 64>, data_init_caller<short, 128>,
data_init_caller<short, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{data_init_caller<float, 1>, data_init_caller<float, 2>, data_init_caller<float, 4>, data_init_caller<float, 8>,
data_init_caller<float, 16>, data_init_caller<float, 32>, data_init_caller<float, 64>, data_init_caller<float, 128>,
data_init_caller<float, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};
static const GetFirstKInitialLocalCaller get_first_k_initial_local_callers[8] =
{
0, 0, 0,
get_first_k_initial_local_caller<short>,
0,
get_first_k_initial_local_caller<float>,
0, 0
};
DataInitCaller data_init_caller = data_init_callers[msg_type][level];
GetFirstKInitialLocalCaller get_first_k_initial_local_caller = get_first_k_initial_local_callers[msg_type];
if (!data_init_caller || !get_first_k_initial_local_caller)
cv::gpu::error("Unsupported message type or levels count", __FILE__, __LINE__);
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
data_init_caller(rows, cols, h, w, level, ndisp, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
get_first_k_initial_local_caller(disp_selected_pyr, data_cost_selected, h, w, nr_plane, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}
///////////////////////////////////////////////////////////////
////////////////////// compute data cost //////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <typename T, int channels>
__global__ void compute_data_cost(T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < h && x < w)
{
int y0 = y << level;
int yt = (y + 1) << level;
int x0 = x << level;
int xt = (x + 1) << level;
T* selected_disparity = selected_disp_pyr + y/2 * cmsg_step2 + x/2;
T* data_cost = data_cost_ + y * cmsg_step1 + x;
for(int d = 0; d < nr_plane; d++)
{
float val = 0.0f;
for(int yi = y0; yi < yt; yi++)
{
for(int xi = x0; xi < xt; xi++)
{
int sel_disp = selected_disparity[d * cdisp_step2];
int xr = xi - sel_disp;
if (xr < 0)
val += cdata_weight * cmax_data_term;
else
{
const uchar* left_x = cleft + yi * cimg_step + xi * channels;
const uchar* right_x = cright + yi * cimg_step + xr * channels;
val += DataCostPerPixel<channels>::compute(left_x, right_x);
}
}
}
data_cost[cdisp_step1 * d] = saturate_cast<T>(val);
}
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_data_cost_caller(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
switch(channels)
{
case 1: csbp_kernels::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>((T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
case 3: csbp_kernels::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>((T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
typedef void (*ComputeDataCostCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream);
2010-08-12 21:47:53 +08:00
void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream)
{
static const ComputeDataCostCaller callers[8] =
{
0, 0, 0,
compute_data_cost_caller<short>,
0,
compute_data_cost_caller<float>,
0, 0
};
size_t disp_step1 = msg_step1 * h;
size_t disp_step2 = msg_step2 * h2;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) );
ComputeDataCostCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsopported message type", __FILE__, __LINE__);
caller(disp_selected_pyr, data_cost, h, w, level, nr_plane, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}
///////////////////////////////////////////////////////////////
//////////////////////// init message /////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <typename T>
__device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new,
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
T* data_cost_selected, T* disparity_selected_new, T* data_cost_new,
const T* data_cost_cur, const T* disparity_selected_cur,
int nr_plane, int nr_plane2)
{
for(int i = 0; i < nr_plane; i++)
{
T minimum = TypeLimits<T>::max();
int id = 0;
for(int j = 0; j < nr_plane2; j++)
{
T cur = data_cost_new[j * cdisp_step1];
if(cur < minimum)
{
minimum = cur;
id = j;
}
}
data_cost_selected[i * cdisp_step1] = data_cost_cur[id * cdisp_step1];
disparity_selected_new[i * cdisp_step1] = disparity_selected_cur[id * cdisp_step1];
u_new[i * cdisp_step1] = u_cur[id * cdisp_step2];
d_new[i * cdisp_step1] = d_cur[id * cdisp_step2];
l_new[i * cdisp_step1] = l_cur[id * cdisp_step2];
r_new[i * cdisp_step1] = r_cur[id * cdisp_step2];
data_cost_new[id * cdisp_step1] = TypeLimits<T>::max();
}
}
template <typename T>
__global__ void init_message(T* u_new_, T* d_new_, T* l_new_, T* r_new_,
const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_,
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
T* data_cost_selected_, T* data_cost_,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < h && x < w)
{
const T* u_cur = u_cur_ + min(h2-1, y/2 + 1) * cmsg_step2 + x/2;
const T* d_cur = d_cur_ + max(0, y/2 - 1) * cmsg_step2 + x/2;
const T* l_cur = l_cur_ + y/2 * cmsg_step2 + min(w2-1, x/2 + 1);
const T* r_cur = r_cur_ + y/2 * cmsg_step2 + max(0, x/2 - 1);
T* disparity_selected_cur_backup = (T*)ctemp2 + y * cmsg_step1 + x;
T* data_cost_new = (T*)ctemp1 + y * cmsg_step1 + x;
const T* disparity_selected_cur = selected_disp_pyr_cur + y/2 * cmsg_step2 + x/2;
T* data_cost = data_cost_ + y * cmsg_step1 + x;
for(int d = 0; d < nr_plane2; d++)
{
int idx2 = d * cdisp_step2;
disparity_selected_cur_backup[d * cdisp_step1] = disparity_selected_cur[idx2];
T val = data_cost[d * cdisp_step1] + u_cur[idx2] + d_cur[idx2] + l_cur[idx2] + r_cur[idx2];
data_cost_new[d * cdisp_step1] = val;
}
T* data_cost_selected = data_cost_selected_ + y * cmsg_step1 + x;
T* disparity_selected_new = selected_disp_pyr_new + y * cmsg_step1 + x;
T* u_new = u_new_ + y * cmsg_step1 + x;
T* d_new = d_new_ + y * cmsg_step1 + x;
T* l_new = l_new_ + y * cmsg_step1 + x;
T* r_new = r_new_ + y * cmsg_step1 + x;
u_cur = u_cur_ + y/2 * cmsg_step2 + x/2;
d_cur = d_cur_ + y/2 * cmsg_step2 + x/2;
l_cur = l_cur_ + y/2 * cmsg_step2 + x/2;
r_cur = r_cur_ + y/2 * cmsg_step2 + x/2;
get_first_k_element_increase(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
data_cost_selected, disparity_selected_new, data_cost_new,
data_cost, disparity_selected_cur_backup, nr_plane, nr_plane2);
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void init_message_caller(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
csbp_kernels::init_message<T><<<grid, threads, 0, stream>>>((T*)u_new.ptr, (T*)d_new.ptr, (T*)l_new.ptr, (T*)r_new.ptr,
(const T*)u_cur.ptr, (const T*)d_cur.ptr, (const T*)l_cur.ptr, (const T*)r_cur.ptr,
(T*)selected_disp_pyr_new.ptr, (const T*)selected_disp_pyr_cur.ptr,
(T*)data_cost_selected.ptr, (T*)data_cost.ptr,
h, w, nr_plane, h2, w2, nr_plane2);
}
typedef void (*InitMessageCaller)(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream);
void init_message(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream)
{
static const InitMessageCaller callers[8] =
{
0, 0, 0,
init_message_caller<short>,
0,
init_message_caller<float>,
0, 0
};
size_t disp_step1 = msg_step1 * h;
size_t disp_step2 = msg_step2 * h2;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) );
InitMessageCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
caller(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost,
h, w, nr_plane, h2, w2, nr_plane2, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}
///////////////////////////////////////////////////////////////
//////////////////// calc all iterations /////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <typename T>
__device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3,
const T* dst_disp, const T* src_disp, int nr_plane, T* temp)
{
T minimum = TypeLimits<T>::max();
for(int d = 0; d < nr_plane; d++)
{
int idx = d * cdisp_step1;
T val = data[idx] + msg1[idx] + msg2[idx] + msg3[idx];
if(val < minimum)
minimum = val;
msg_dst[idx] = val;
}
float sum = 0;
for(int d = 0; d < nr_plane; d++)
{
float cost_min = minimum + cmax_disc_term;
T src_disp_reg = src_disp[d * cdisp_step1];
for(int d2 = 0; d2 < nr_plane; d2++)
cost_min = fmin(cost_min, msg_dst[d2 * cdisp_step1] + cdisc_single_jump * abs(dst_disp[d2 * cdisp_step1] - src_disp_reg));
temp[d * cdisp_step1] = saturate_cast<T>(cost_min);
sum += cost_min;
}
sum /= nr_plane;
for(int d = 0; d < nr_plane; d++)
msg_dst[d * cdisp_step1] = saturate_cast<T>(temp[d * cdisp_step1] - sum);
}
template <typename T>
__global__ void compute_message(T* u_, T* d_, T* l_, T* r_, const T* data_cost_selected, const T* selected_disp_pyr_cur,
int h, int w, int nr_plane, int i)
{
int y = blockIdx.y * blockDim.y + threadIdx.y;
int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + i) & 1);
if (y > 0 && y < h - 1 && x > 0 && x < w - 1)
{
const T* data = data_cost_selected + y * cmsg_step1 + x;
T* u = u_ + y * cmsg_step1 + x;
T* d = d_ + y * cmsg_step1 + x;
T* l = l_ + y * cmsg_step1 + x;
T* r = r_ + y * cmsg_step1 + x;
const T* disp = selected_disp_pyr_cur + y * cmsg_step1 + x;
T* temp = (T*)ctemp1 + y * cmsg_step1 + x;
message_per_pixel(data, u, r - 1, u + cmsg_step1, l + 1, disp, disp - cmsg_step1, nr_plane, temp);
message_per_pixel(data, d, d - cmsg_step1, r - 1, l + 1, disp, disp + cmsg_step1, nr_plane, temp);
message_per_pixel(data, l, u + cmsg_step1, d - cmsg_step1, l + 1, disp, disp - 1, nr_plane, temp);
message_per_pixel(data, r, u + cmsg_step1, d - cmsg_step1, r - 1, disp, disp + 1, nr_plane, temp);
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_message_caller(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x << 1);
grid.y = divUp(h, threads.y);
csbp_kernels::compute_message<T><<<grid, threads, 0, stream>>>((T*)u.ptr, (T*)d.ptr, (T*)l.ptr, (T*)r.ptr,
(const T*)data_cost_selected.ptr, (const T*)selected_disp_pyr_cur.ptr,
h, w, nr_plane, t & 1);
}
typedef void (*ComputeMessageCaller)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream);
void calc_all_iterations(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, size_t msg_step, int msg_type, int h, int w, int nr_plane, int iters, const cudaStream_t& stream)
{
static const ComputeMessageCaller callers[8] =
{
0, 0, 0,
compute_message_caller<short>,
0,
compute_message_caller<float>,
0, 0
};
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
ComputeMessageCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
for(int t = 0; t < iters; ++t)
{
caller(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}
}}}
///////////////////////////////////////////////////////////////
/////////////////////////// output ////////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
{
template <typename T>
__global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_,
const T* data_cost_selected, const T* disp_selected_pyr,
short* disp, size_t res_step, int cols, int rows, int nr_plane)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y > 0 && y < rows - 1 && x > 0 && x < cols - 1)
{
const T* data = data_cost_selected + y * cmsg_step1 + x;
const T* disp_selected = disp_selected_pyr + y * cmsg_step1 + x;
const T* u = u_ + (y+1) * cmsg_step1 + (x+0);
const T* d = d_ + (y-1) * cmsg_step1 + (x+0);
const T* l = l_ + (y+0) * cmsg_step1 + (x+1);
const T* r = r_ + (y+0) * cmsg_step1 + (x-1);
int best = 0;
T best_val = TypeLimits<T>::max();
for (int i = 0; i < nr_plane; ++i)
{
int idx = i * cdisp_step1;
T val = data[idx]+ u[idx] + d[idx] + l[idx] + r[idx];
if (val < best_val)
{
best_val = val;
best = saturate_cast<short>(disp_selected[idx]);
}
}
disp[res_step * y + x] = best;
}
}
}
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_disp_caller(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(disp.cols, threads.x);
grid.y = divUp(disp.rows, threads.y);
csbp_kernels::compute_disp<T><<<grid, threads, 0, stream>>>((const T*)u.ptr, (const T*)d.ptr, (const T*)l.ptr, (const T*)r.ptr,
(const T*)data_cost_selected.ptr, (const T*)disp_selected.ptr,
(short*)disp.ptr, disp.step / sizeof(short), disp.cols, disp.rows, nr_plane);
}
typedef void (*ComputeDispCaller)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream);
void compute_disp(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, size_t msg_step, int msg_type, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream)
{
static const ComputeDispCaller callers[8] =
{
0, 0, 0,
compute_disp_caller<short>,
0,
compute_disp_caller<float>,
0, 0
};
size_t disp_step = disp.rows * msg_step;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
ComputeDispCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
caller(u, d, l, r, data_cost_selected, disp_selected, disp, nr_plane, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
}}}