opencv/doc/tutorials/imgproc/imgtrans/remap/remap.markdown

185 lines
5.8 KiB
Markdown
Raw Normal View History

2014-11-27 20:39:05 +08:00
Remapping {#tutorial_remap}
=========
Goal
----
In this tutorial you will learn how to:
a. Use the OpenCV function @ref cv::remap to implement simple remapping routines.
Theory
------
### What is remapping?
- It is the process of taking pixels from one place in the image and locating them in another
position in a new image.
- To accomplish the mapping process, it might be necessary to do some interpolation for
non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence
between source and destination images.
- We can express the remap for every pixel location \f$(x,y)\f$ as:
\f[g(x,y) = f ( h(x,y) )\f]
where \f$g()\f$ is the remapped image, \f$f()\f$ the source image and \f$h(x,y)\f$ is the mapping function
that operates on \f$(x,y)\f$.
- Let's think in a quick example. Imagine that we have an image \f$I\f$ and, say, we want to do a
remap such that:
\f[h(x,y) = (I.cols - x, y )\f]
What would happen? It is easily seen that the image would flip in the \f$x\f$ direction. For
instance, consider the input image:
2014-11-28 21:21:28 +08:00
![](images/Remap_Tutorial_Theory_0.jpg)
2014-11-27 20:39:05 +08:00
observe how the red circle changes positions with respect to x (considering \f$x\f$ the horizontal
direction):
2014-11-28 21:21:28 +08:00
![](images/Remap_Tutorial_Theory_1.jpg)
2014-11-27 20:39:05 +08:00
- In OpenCV, the function @ref cv::remap offers a simple remapping implementation.
Code
----
2014-11-28 21:21:28 +08:00
-# **What does this program do?**
2014-11-27 20:39:05 +08:00
- Loads an image
- Each second, apply 1 of 4 different remapping processes to the image and display them
indefinitely in a window.
- Wait for the user to exit the program
2014-11-28 21:21:28 +08:00
-# The tutorial code's is shown lines below. You can also download it from
2014-11-27 20:39:05 +08:00
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp)
2014-11-28 21:21:28 +08:00
@includelineno samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp
2014-11-27 20:39:05 +08:00
Explanation
-----------
2014-11-28 21:21:28 +08:00
-# Create some variables we will use:
2014-11-27 20:39:05 +08:00
@code{.cpp}
Mat src, dst;
Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;
@endcode
2014-11-28 21:21:28 +08:00
-# Load an image:
2014-11-27 20:39:05 +08:00
@code{.cpp}
src = imread( argv[1], 1 );
@endcode
2014-11-28 21:21:28 +08:00
-# Create the destination image and the two mapping matrices (for x and y )
2014-11-27 20:39:05 +08:00
@code{.cpp}
dst.create( src.size(), src.type() );
map_x.create( src.size(), CV_32FC1 );
map_y.create( src.size(), CV_32FC1 );
@endcode
2014-11-28 21:21:28 +08:00
-# Create a window to display results
2014-11-27 20:39:05 +08:00
@code{.cpp}
namedWindow( remap_window, WINDOW_AUTOSIZE );
@endcode
2014-11-28 21:21:28 +08:00
-# Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply
2014-11-27 20:39:05 +08:00
them to our source image:
@code{.cpp}
while( true )
{
/// Each 1 sec. Press ESC to exit the program
int c = waitKey( 1000 );
if( (char)c == 27 )
{ break; }
/// Update map_x & map_y. Then apply remap
update_map();
remap( src, dst, map_x, map_y, INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) );
/// Display results
imshow( remap_window, dst );
}
@endcode
The function that applies the remapping is @ref cv::remap . We give the following arguments:
- **src**: Source image
- **dst**: Destination image of same size as *src*
- **map_x**: The mapping function in the x direction. It is equivalent to the first component
of \f$h(i,j)\f$
- **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of
the same size as *src*
- **INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by
default.
- **BORDER_CONSTANT**: Default
How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading:
2014-11-28 21:21:28 +08:00
-# **Updating the mapping matrices:** We are going to perform 4 different mappings:
2014-11-28 00:54:13 +08:00
-# Reduce the picture to half its size and will display it in the middle:
2014-11-27 20:39:05 +08:00
\f[h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5)\f]
for all pairs \f$(i,j)\f$ such that: \f$\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}\f$ and
\f$\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}\f$
2014-11-28 00:54:13 +08:00
-# Turn the image upside down: \f$h( i, j ) = (i, src.rows - j)\f$
-# Reflect the image from left to right: \f$h(i,j) = ( src.cols - i, j )\f$
-# Combination of b and c: \f$h(i,j) = ( src.cols - i, src.rows - j )\f$
2014-11-27 20:39:05 +08:00
This is expressed in the following snippet. Here, *map_x* represents the first coordinate of
*h(i,j)* and *map_y* the second coordinate.
@code{.cpp}
for( int j = 0; j < src.rows; j++ )
{ for( int i = 0; i < src.cols; i++ )
{
switch( ind )
{
case 0:
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 )
{
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ;
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ;
}
else
{ map_x.at<float>(j,i) = 0 ;
map_y.at<float>(j,i) = 0 ;
}
break;
case 1:
map_x.at<float>(j,i) = i ;
map_y.at<float>(j,i) = src.rows - j ;
break;
case 2:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = j ;
break;
case 3:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = src.rows - j ;
break;
} // end of switch
}
}
ind++;
}
@endcode
2014-11-28 21:21:28 +08:00
2014-11-27 20:39:05 +08:00
Result
------
2014-11-28 21:21:28 +08:00
-# After compiling the code above, you can execute it giving as argument an image path. For
2014-11-27 20:39:05 +08:00
instance, by using the following image:
2014-11-28 21:21:28 +08:00
![](images/Remap_Tutorial_Original_Image.jpg)
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
-# This is the result of reducing it to half the size and centering it:
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
![](images/Remap_Tutorial_Result_0.jpg)
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
-# Turning it upside down:
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
![](images/Remap_Tutorial_Result_1.jpg)
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
-# Reflecting it in the x direction:
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
![](images/Remap_Tutorial_Result_2.jpg)
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
-# Reflecting it in both directions:
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
![](images/Remap_Tutorial_Result_3.jpg)