opencv/doc/tutorials/features2d/akaze_matching/akaze_matching.markdown

184 lines
5.4 KiB
Markdown
Raw Normal View History

2014-11-27 20:39:05 +08:00
AKAZE local features matching {#tutorial_akaze_matching}
=============================
2020-12-08 00:13:54 +08:00
@tableofcontents
@prev_tutorial{tutorial_detection_of_planar_objects}
@next_tutorial{tutorial_akaze_tracking}
2020-12-05 06:46:00 +08:00
| | |
| -: | :- |
| Original author | Fedor Morozov |
| Compatibility | OpenCV >= 3.0 |
2014-11-27 20:39:05 +08:00
Introduction
------------
2014-11-28 21:21:28 +08:00
In this tutorial we will learn how to use AKAZE @cite ANB13 local features to detect and match keypoints on
2014-11-27 20:39:05 +08:00
two images.
We will find keypoints on a pair of images with given homography matrix, match them and count the
number of inliers (i.e. matches that fit in the given homography).
2014-11-27 20:39:05 +08:00
You can find expanded version of this example here:
<https://github.com/pablofdezalc/test_kaze_akaze_opencv>
Data
----
We are going to use images 1 and 3 from *Graffiti* sequence of [Oxford dataset](http://www.robots.ox.ac.uk/~vgg/data/data-aff.html).
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
![](images/graf.png)
2014-11-27 20:39:05 +08:00
Homography is given by a 3 by 3 matrix:
@code{.none}
7.6285898e-01 -2.9922929e-01 2.2567123e+02
3.3443473e-01 1.0143901e+00 -7.6999973e+01
3.4663091e-04 -1.4364524e-05 1.0000000e+00
@endcode
You can find the images (*graf1.png*, *graf3.png*) and homography (*H1to3p.xml*) in
*opencv/samples/data/*.
2014-11-27 20:39:05 +08:00
### Source Code
@add_toggle_cpp
- **Downloadable code**: Click
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/cpp/tutorial_code/features2D/AKAZE_match.cpp)
- **Code at glance:**
@include samples/cpp/tutorial_code/features2D/AKAZE_match.cpp
@end_toggle
@add_toggle_java
- **Downloadable code**: Click
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java)
- **Code at glance:**
@include samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java
@end_toggle
@add_toggle_python
- **Downloadable code**: Click
[here](https://raw.githubusercontent.com/opencv/opencv/master/samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py)
- **Code at glance:**
@include samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py
@end_toggle
2014-11-27 20:39:05 +08:00
### Explanation
- **Load images and homography**
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp load
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java load
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py load
@end_toggle
We are loading grayscale images here. Homography is stored in the xml created with FileStorage.
- **Detect keypoints and compute descriptors using AKAZE**
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp AKAZE
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java AKAZE
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py AKAZE
@end_toggle
We create AKAZE and detect and compute AKAZE keypoints and descriptors. Since we don't need the *mask*
parameter, *noArray()* is used.
- **Use brute-force matcher to find 2-nn matches**
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp 2-nn matching
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java 2-nn matching
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py 2-nn matching
@end_toggle
We use Hamming distance, because AKAZE uses binary descriptor by default.
- **Use 2-nn matches and ratio criterion to find correct keypoint matches**
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp ratio test filtering
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java ratio test filtering
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py ratio test filtering
@end_toggle
If the closest match distance is significantly lower than the second closest one, then the match is correct (match is not ambiguous).
- **Check if our matches fit in the homography model**
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp homography check
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java homography check
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py homography check
@end_toggle
If the distance from first keypoint's projection to the second keypoint is less than threshold,
then it fits the homography model.
We create a new set of matches for the inliers, because it is required by the drawing function.
- **Output results**
@add_toggle_cpp
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp draw final matches
@end_toggle
@add_toggle_java
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java draw final matches
@end_toggle
@add_toggle_python
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py draw final matches
@end_toggle
Here we save the resulting image and print some statistics.
Results
-------
### Found matches
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
![](images/res.png)
2014-11-27 20:39:05 +08:00
Depending on your OpenCV version, you should get results coherent with:
2014-11-27 20:39:05 +08:00
@code{.none}
Keypoints 1: 2943
Keypoints 2: 3511
Matches: 447
Inliers: 308
Inlier Ratio: 0.689038
2014-11-27 20:39:05 +08:00
@endcode