mirror of
https://github.com/opencv/opencv.git
synced 2025-01-13 16:44:05 +08:00
115 lines
4.6 KiB
C++
115 lines
4.6 KiB
C++
|
#include "test_precomp.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
struct CV_EXPORTS L2Fake : public L2<float>
|
||
|
{
|
||
|
enum { normType = NORM_L2 };
|
||
|
};
|
||
|
|
||
|
class CV_BruteForceMatcherTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_BruteForceMatcherTest() {}
|
||
|
protected:
|
||
|
void run( int )
|
||
|
{
|
||
|
const int dimensions = 64;
|
||
|
const int descriptorsNumber = 5000;
|
||
|
|
||
|
Mat train = Mat( descriptorsNumber, dimensions, CV_32FC1);
|
||
|
Mat query = Mat( descriptorsNumber, dimensions, CV_32FC1);
|
||
|
|
||
|
Mat permutation( 1, descriptorsNumber, CV_32SC1 );
|
||
|
for( int i=0;i<descriptorsNumber;i++ )
|
||
|
permutation.at<int>( 0, i ) = i;
|
||
|
|
||
|
//RNG rng = RNG( cvGetTickCount() );
|
||
|
RNG rng;
|
||
|
randShuffle( permutation, 1, &rng );
|
||
|
|
||
|
float boundary = 500.f;
|
||
|
for( int row=0;row<descriptorsNumber;row++ )
|
||
|
{
|
||
|
for( int col=0;col<dimensions;col++ )
|
||
|
{
|
||
|
int bit = rng( 2 );
|
||
|
train.at<float>( permutation.at<int>( 0, row ), col ) = bit*boundary + rng.uniform( 0.f, boundary );
|
||
|
query.at<float>( row, col ) = bit*boundary + rng.uniform( 0.f, boundary );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
vector<DMatch> specMatches, genericMatches;
|
||
|
BruteForceMatcher<L2<float> > specMatcher;
|
||
|
BruteForceMatcher<L2Fake > genericMatcher;
|
||
|
|
||
|
int64 time0 = cvGetTickCount();
|
||
|
specMatcher.match( query, train, specMatches );
|
||
|
int64 time1 = cvGetTickCount();
|
||
|
genericMatcher.match( query, train, genericMatches );
|
||
|
int64 time2 = cvGetTickCount();
|
||
|
|
||
|
float specMatcherTime = float(time1 - time0)/(float)cvGetTickFrequency();
|
||
|
ts->printf( cvtest::TS::LOG, "Matching by matrix multiplication time s: %f, us per pair: %f\n",
|
||
|
specMatcherTime*1e-6, specMatcherTime/( descriptorsNumber*descriptorsNumber ) );
|
||
|
|
||
|
float genericMatcherTime = float(time2 - time1)/(float)cvGetTickFrequency();
|
||
|
ts->printf( cvtest::TS::LOG, "Matching without matrix multiplication time s: %f, us per pair: %f\n",
|
||
|
genericMatcherTime*1e-6, genericMatcherTime/( descriptorsNumber*descriptorsNumber ) );
|
||
|
|
||
|
if( (int)specMatches.size() != descriptorsNumber || (int)genericMatches.size() != descriptorsNumber )
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
for( int i=0;i<descriptorsNumber;i++ )
|
||
|
{
|
||
|
float epsilon = 0.01f;
|
||
|
bool isEquiv = fabs( specMatches[i].distance - genericMatches[i].distance ) < epsilon &&
|
||
|
specMatches[i].queryIdx == genericMatches[i].queryIdx &&
|
||
|
specMatches[i].trainIdx == genericMatches[i].trainIdx;
|
||
|
if( !isEquiv || specMatches[i].trainIdx != permutation.at<int>( 0, i ) )
|
||
|
{
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//Test mask
|
||
|
Mat mask( query.rows, train.rows, CV_8UC1 );
|
||
|
rng.fill( mask, RNG::UNIFORM, 0, 2 );
|
||
|
|
||
|
|
||
|
time0 = cvGetTickCount();
|
||
|
specMatcher.match( query, train, specMatches, mask );
|
||
|
time1 = cvGetTickCount();
|
||
|
genericMatcher.match( query, train, genericMatches, mask );
|
||
|
time2 = cvGetTickCount();
|
||
|
|
||
|
specMatcherTime = float(time1 - time0)/(float)cvGetTickFrequency();
|
||
|
ts->printf( cvtest::TS::LOG, "Matching by matrix multiplication time with mask s: %f, us per pair: %f\n",
|
||
|
specMatcherTime*1e-6, specMatcherTime/( descriptorsNumber*descriptorsNumber ) );
|
||
|
|
||
|
genericMatcherTime = float(time2 - time1)/(float)cvGetTickFrequency();
|
||
|
ts->printf( cvtest::TS::LOG, "Matching without matrix multiplication time with mask s: %f, us per pair: %f\n",
|
||
|
genericMatcherTime*1e-6, genericMatcherTime/( descriptorsNumber*descriptorsNumber ) );
|
||
|
|
||
|
if( specMatches.size() != genericMatches.size() )
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||
|
|
||
|
for( size_t i=0;i<specMatches.size();i++ )
|
||
|
{
|
||
|
//float epsilon = 1e-2;
|
||
|
float epsilon = 10000000;
|
||
|
bool isEquiv = fabs( specMatches[i].distance - genericMatches[i].distance ) < epsilon &&
|
||
|
specMatches[i].queryIdx == genericMatches[i].queryIdx &&
|
||
|
specMatches[i].trainIdx == genericMatches[i].trainIdx;
|
||
|
if( !isEquiv )
|
||
|
{
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST(Legacy_BruteForceMatcher, accuracy) { CV_BruteForceMatcherTest test; test.safe_run(); }
|