2011-12-20 19:33:12 +08:00
|
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "epnp.h"
|
2011-12-20 20:10:12 +08:00
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
double ePnP( InputArray _opoints, InputArray _ipoints,
|
|
|
|
InputArray _cameraMatrix, InputArray _distCoeffs,
|
|
|
|
OutputArray _rvec, OutputArray _tvec)
|
2011-12-20 19:33:12 +08:00
|
|
|
{
|
2011-12-20 20:10:12 +08:00
|
|
|
Mat opoints = _opoints.getMat(), ipoints = _ipoints.getMat();
|
|
|
|
int npoints = std::max(opoints.checkVector(3, CV_32F), opoints.checkVector(3, CV_64F));
|
|
|
|
CV_Assert( npoints >= 0 && npoints == std::max(ipoints.checkVector(2, CV_32F), ipoints.checkVector(2, CV_64F)) );
|
|
|
|
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
|
|
|
|
|
|
|
|
Mat undistortedPoints;
|
|
|
|
undistortPoints(ipoints, undistortedPoints, cameraMatrix, distCoeffs);
|
|
|
|
|
2011-12-20 19:33:12 +08:00
|
|
|
epnp PnP;
|
|
|
|
PnP.set_internal_parameters(cameraMatrix.at<double> (0, 2), cameraMatrix.at<double> (1, 2), cameraMatrix.at<double> (0, 0), cameraMatrix.at<double> (1, 1));
|
2011-12-20 20:10:12 +08:00
|
|
|
PnP.set_maximum_number_of_correspondences(npoints);
|
2011-12-20 19:33:12 +08:00
|
|
|
PnP.reset_correspondences();
|
|
|
|
for(int i = 0; i < npoints; i++) {
|
|
|
|
PnP.add_correspondence(opoints.at<Point3d>(0,i).x, opoints.at<Point3d>(0,i).y, opoints.at<Point3d>(0,i).z, undistortedPoints.at<Point2d>(0,i).x* cameraMatrix.at<double> (0, 0) + cameraMatrix.at<double> (0, 2),
|
|
|
|
undistortedPoints.at<Point2d>(0,i).y* cameraMatrix.at<double> (1, 1) + cameraMatrix.at<double> (1, 2));
|
2011-12-20 20:10:12 +08:00
|
|
|
}
|
2011-12-20 19:33:12 +08:00
|
|
|
double R_est[3][3], t_est[3];
|
2011-12-20 20:10:12 +08:00
|
|
|
double error = PnP.compute_pose(R_est, t_est);
|
|
|
|
|
|
|
|
_tvec.create(3,1,CV_64F);
|
|
|
|
_rvec.create(3,1,CV_64F);
|
|
|
|
Mat t = Mat(3, 1, CV_64FC1, t_est);
|
|
|
|
Mat tvec = _tvec.getMat();
|
|
|
|
t.copyTo(tvec);
|
|
|
|
Mat R = Mat(3, 3, CV_64FC1, R_est);
|
|
|
|
Mat rvec = _rvec.getMat();
|
|
|
|
Rodrigues(R, rvec);
|
|
|
|
return error;
|
2011-12-20 19:33:12 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
epnp::epnp(void)
|
|
|
|
{
|
|
|
|
maximum_number_of_correspondences = 0;
|
|
|
|
number_of_correspondences = 0;
|
|
|
|
|
|
|
|
pws = 0;
|
|
|
|
us = 0;
|
|
|
|
alphas = 0;
|
|
|
|
pcs = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
epnp::~epnp()
|
|
|
|
{
|
|
|
|
delete [] pws;
|
|
|
|
delete [] us;
|
|
|
|
delete [] alphas;
|
|
|
|
delete [] pcs;
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::set_internal_parameters(double uc, double vc, double fu, double fv)
|
|
|
|
{
|
|
|
|
this->uc = uc;
|
|
|
|
this->vc = vc;
|
|
|
|
this->fu = fu;
|
|
|
|
this->fv = fv;
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::set_maximum_number_of_correspondences(int n)
|
|
|
|
{
|
|
|
|
if (maximum_number_of_correspondences < n) {
|
|
|
|
if (pws != 0) delete [] pws;
|
|
|
|
if (us != 0) delete [] us;
|
|
|
|
if (alphas != 0) delete [] alphas;
|
|
|
|
if (pcs != 0) delete [] pcs;
|
|
|
|
|
|
|
|
maximum_number_of_correspondences = n;
|
|
|
|
pws = new double[3 * maximum_number_of_correspondences];
|
|
|
|
us = new double[2 * maximum_number_of_correspondences];
|
|
|
|
alphas = new double[4 * maximum_number_of_correspondences];
|
|
|
|
pcs = new double[3 * maximum_number_of_correspondences];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::reset_correspondences(void)
|
|
|
|
{
|
|
|
|
number_of_correspondences = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::add_correspondence(double X, double Y, double Z, double u, double v)
|
|
|
|
{
|
|
|
|
pws[3 * number_of_correspondences ] = X;
|
|
|
|
pws[3 * number_of_correspondences + 1] = Y;
|
|
|
|
pws[3 * number_of_correspondences + 2] = Z;
|
|
|
|
|
|
|
|
us[2 * number_of_correspondences ] = u;
|
|
|
|
us[2 * number_of_correspondences + 1] = v;
|
|
|
|
|
|
|
|
number_of_correspondences++;
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::choose_control_points(void)
|
|
|
|
{
|
|
|
|
// Take C0 as the reference points centroid:
|
|
|
|
cws[0][0] = cws[0][1] = cws[0][2] = 0;
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++)
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
cws[0][j] += pws[3 * i + j];
|
|
|
|
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
cws[0][j] /= number_of_correspondences;
|
|
|
|
|
|
|
|
|
|
|
|
// Take C1, C2, and C3 from PCA on the reference points:
|
|
|
|
CvMat * PW0 = cvCreateMat(number_of_correspondences, 3, CV_64F);
|
|
|
|
|
|
|
|
double pw0tpw0[3 * 3], dc[3], uct[3 * 3];
|
|
|
|
CvMat PW0tPW0 = cvMat(3, 3, CV_64F, pw0tpw0);
|
|
|
|
CvMat DC = cvMat(3, 1, CV_64F, dc);
|
|
|
|
CvMat UCt = cvMat(3, 3, CV_64F, uct);
|
|
|
|
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++)
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
PW0->data.db[3 * i + j] = pws[3 * i + j] - cws[0][j];
|
|
|
|
|
|
|
|
cvMulTransposed(PW0, &PW0tPW0, 1);
|
|
|
|
cvSVD(&PW0tPW0, &DC, &UCt, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
|
|
|
|
|
|
|
|
cvReleaseMat(&PW0);
|
|
|
|
|
|
|
|
for(int i = 1; i < 4; i++) {
|
|
|
|
double k = sqrt(dc[i - 1] / number_of_correspondences);
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
cws[i][j] = cws[0][j] + k * uct[3 * (i - 1) + j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::compute_barycentric_coordinates(void)
|
|
|
|
{
|
|
|
|
double cc[3 * 3], cc_inv[3 * 3];
|
|
|
|
CvMat CC = cvMat(3, 3, CV_64F, cc);
|
|
|
|
CvMat CC_inv = cvMat(3, 3, CV_64F, cc_inv);
|
|
|
|
|
|
|
|
for(int i = 0; i < 3; i++)
|
|
|
|
for(int j = 1; j < 4; j++)
|
|
|
|
cc[3 * i + j - 1] = cws[j][i] - cws[0][i];
|
|
|
|
|
|
|
|
cvInvert(&CC, &CC_inv, CV_SVD);
|
|
|
|
double * ci = cc_inv;
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
|
|
double * pi = pws + 3 * i;
|
|
|
|
double * a = alphas + 4 * i;
|
|
|
|
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
a[1 + j] =
|
|
|
|
ci[3 * j ] * (pi[0] - cws[0][0]) +
|
|
|
|
ci[3 * j + 1] * (pi[1] - cws[0][1]) +
|
|
|
|
ci[3 * j + 2] * (pi[2] - cws[0][2]);
|
|
|
|
a[0] = 1.0f - a[1] - a[2] - a[3];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::fill_M(CvMat * M,
|
|
|
|
const int row, const double * as, const double u, const double v)
|
|
|
|
{
|
|
|
|
double * M1 = M->data.db + row * 12;
|
|
|
|
double * M2 = M1 + 12;
|
|
|
|
|
|
|
|
for(int i = 0; i < 4; i++) {
|
|
|
|
M1[3 * i ] = as[i] * fu;
|
|
|
|
M1[3 * i + 1] = 0.0;
|
|
|
|
M1[3 * i + 2] = as[i] * (uc - u);
|
|
|
|
|
|
|
|
M2[3 * i ] = 0.0;
|
|
|
|
M2[3 * i + 1] = as[i] * fv;
|
|
|
|
M2[3 * i + 2] = as[i] * (vc - v);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::compute_ccs(const double * betas, const double * ut)
|
|
|
|
{
|
|
|
|
for(int i = 0; i < 4; i++)
|
|
|
|
ccs[i][0] = ccs[i][1] = ccs[i][2] = 0.0f;
|
|
|
|
|
|
|
|
for(int i = 0; i < 4; i++) {
|
|
|
|
const double * v = ut + 12 * (11 - i);
|
|
|
|
for(int j = 0; j < 4; j++)
|
|
|
|
for(int k = 0; k < 3; k++)
|
|
|
|
ccs[j][k] += betas[i] * v[3 * j + k];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::compute_pcs(void)
|
|
|
|
{
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
|
|
double * a = alphas + 4 * i;
|
|
|
|
double * pc = pcs + 3 * i;
|
|
|
|
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
pc[j] = a[0] * ccs[0][j] + a[1] * ccs[1][j] + a[2] * ccs[2][j] + a[3] * ccs[3][j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double epnp::compute_pose(double R[3][3], double t[3])
|
|
|
|
{
|
|
|
|
choose_control_points();
|
|
|
|
compute_barycentric_coordinates();
|
|
|
|
|
|
|
|
CvMat * M = cvCreateMat(2 * number_of_correspondences, 12, CV_64F);
|
|
|
|
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++)
|
|
|
|
fill_M(M, 2 * i, alphas + 4 * i, us[2 * i], us[2 * i + 1]);
|
|
|
|
|
|
|
|
double mtm[12 * 12], d[12], ut[12 * 12];
|
|
|
|
CvMat MtM = cvMat(12, 12, CV_64F, mtm);
|
|
|
|
CvMat D = cvMat(12, 1, CV_64F, d);
|
|
|
|
CvMat Ut = cvMat(12, 12, CV_64F, ut);
|
|
|
|
|
|
|
|
cvMulTransposed(M, &MtM, 1);
|
|
|
|
cvSVD(&MtM, &D, &Ut, 0, CV_SVD_MODIFY_A | CV_SVD_U_T);
|
|
|
|
cvReleaseMat(&M);
|
|
|
|
|
|
|
|
double l_6x10[6 * 10], rho[6];
|
|
|
|
CvMat L_6x10 = cvMat(6, 10, CV_64F, l_6x10);
|
|
|
|
CvMat Rho = cvMat(6, 1, CV_64F, rho);
|
|
|
|
|
|
|
|
compute_L_6x10(ut, l_6x10);
|
|
|
|
compute_rho(rho);
|
|
|
|
|
|
|
|
double Betas[4][4], rep_errors[4];
|
|
|
|
double Rs[4][3][3], ts[4][3];
|
|
|
|
|
|
|
|
find_betas_approx_1(&L_6x10, &Rho, Betas[1]);
|
|
|
|
gauss_newton(&L_6x10, &Rho, Betas[1]);
|
|
|
|
rep_errors[1] = compute_R_and_t(ut, Betas[1], Rs[1], ts[1]);
|
|
|
|
|
|
|
|
find_betas_approx_2(&L_6x10, &Rho, Betas[2]);
|
|
|
|
gauss_newton(&L_6x10, &Rho, Betas[2]);
|
|
|
|
rep_errors[2] = compute_R_and_t(ut, Betas[2], Rs[2], ts[2]);
|
|
|
|
|
|
|
|
find_betas_approx_3(&L_6x10, &Rho, Betas[3]);
|
|
|
|
gauss_newton(&L_6x10, &Rho, Betas[3]);
|
|
|
|
rep_errors[3] = compute_R_and_t(ut, Betas[3], Rs[3], ts[3]);
|
|
|
|
|
|
|
|
int N = 1;
|
|
|
|
if (rep_errors[2] < rep_errors[1]) N = 2;
|
|
|
|
if (rep_errors[3] < rep_errors[N]) N = 3;
|
|
|
|
|
|
|
|
copy_R_and_t(Rs[N], ts[N], R, t);
|
|
|
|
|
|
|
|
return rep_errors[N];
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::copy_R_and_t(const double R_src[3][3], const double t_src[3],
|
|
|
|
double R_dst[3][3], double t_dst[3])
|
|
|
|
{
|
|
|
|
for(int i = 0; i < 3; i++) {
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
R_dst[i][j] = R_src[i][j];
|
|
|
|
t_dst[i] = t_src[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double epnp::dist2(const double * p1, const double * p2)
|
|
|
|
{
|
|
|
|
return
|
|
|
|
(p1[0] - p2[0]) * (p1[0] - p2[0]) +
|
|
|
|
(p1[1] - p2[1]) * (p1[1] - p2[1]) +
|
|
|
|
(p1[2] - p2[2]) * (p1[2] - p2[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
double epnp::dot(const double * v1, const double * v2)
|
|
|
|
{
|
|
|
|
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
double epnp::reprojection_error(const double R[3][3], const double t[3])
|
|
|
|
{
|
|
|
|
double sum2 = 0.0;
|
|
|
|
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
|
|
double * pw = pws + 3 * i;
|
|
|
|
double Xc = dot(R[0], pw) + t[0];
|
|
|
|
double Yc = dot(R[1], pw) + t[1];
|
|
|
|
double inv_Zc = 1.0 / (dot(R[2], pw) + t[2]);
|
|
|
|
double ue = uc + fu * Xc * inv_Zc;
|
|
|
|
double ve = vc + fv * Yc * inv_Zc;
|
|
|
|
double u = us[2 * i], v = us[2 * i + 1];
|
|
|
|
|
|
|
|
sum2 += sqrt( (u - ue) * (u - ue) + (v - ve) * (v - ve) );
|
|
|
|
}
|
|
|
|
|
|
|
|
return sum2 / number_of_correspondences;
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::estimate_R_and_t(double R[3][3], double t[3])
|
|
|
|
{
|
|
|
|
double pc0[3], pw0[3];
|
|
|
|
|
|
|
|
pc0[0] = pc0[1] = pc0[2] = 0.0;
|
|
|
|
pw0[0] = pw0[1] = pw0[2] = 0.0;
|
|
|
|
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
|
|
const double * pc = pcs + 3 * i;
|
|
|
|
const double * pw = pws + 3 * i;
|
|
|
|
|
|
|
|
for(int j = 0; j < 3; j++) {
|
|
|
|
pc0[j] += pc[j];
|
|
|
|
pw0[j] += pw[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(int j = 0; j < 3; j++) {
|
|
|
|
pc0[j] /= number_of_correspondences;
|
|
|
|
pw0[j] /= number_of_correspondences;
|
|
|
|
}
|
|
|
|
|
|
|
|
double abt[3 * 3], abt_d[3], abt_u[3 * 3], abt_v[3 * 3];
|
|
|
|
CvMat ABt = cvMat(3, 3, CV_64F, abt);
|
|
|
|
CvMat ABt_D = cvMat(3, 1, CV_64F, abt_d);
|
|
|
|
CvMat ABt_U = cvMat(3, 3, CV_64F, abt_u);
|
|
|
|
CvMat ABt_V = cvMat(3, 3, CV_64F, abt_v);
|
|
|
|
|
|
|
|
cvSetZero(&ABt);
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
|
|
double * pc = pcs + 3 * i;
|
|
|
|
double * pw = pws + 3 * i;
|
|
|
|
|
|
|
|
for(int j = 0; j < 3; j++) {
|
|
|
|
abt[3 * j ] += (pc[j] - pc0[j]) * (pw[0] - pw0[0]);
|
|
|
|
abt[3 * j + 1] += (pc[j] - pc0[j]) * (pw[1] - pw0[1]);
|
|
|
|
abt[3 * j + 2] += (pc[j] - pc0[j]) * (pw[2] - pw0[2]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvSVD(&ABt, &ABt_D, &ABt_U, &ABt_V, CV_SVD_MODIFY_A);
|
|
|
|
|
|
|
|
for(int i = 0; i < 3; i++)
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
R[i][j] = dot(abt_u + 3 * i, abt_v + 3 * j);
|
|
|
|
|
|
|
|
const double det =
|
|
|
|
R[0][0] * R[1][1] * R[2][2] + R[0][1] * R[1][2] * R[2][0] + R[0][2] * R[1][0] * R[2][1] -
|
|
|
|
R[0][2] * R[1][1] * R[2][0] - R[0][1] * R[1][0] * R[2][2] - R[0][0] * R[1][2] * R[2][1];
|
|
|
|
|
|
|
|
if (det < 0) {
|
|
|
|
R[2][0] = -R[2][0];
|
|
|
|
R[2][1] = -R[2][1];
|
|
|
|
R[2][2] = -R[2][2];
|
|
|
|
}
|
|
|
|
|
|
|
|
t[0] = pc0[0] - dot(R[0], pw0);
|
|
|
|
t[1] = pc0[1] - dot(R[1], pw0);
|
|
|
|
t[2] = pc0[2] - dot(R[2], pw0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::print_pose(const double R[3][3], const double t[3])
|
|
|
|
{
|
|
|
|
cout << R[0][0] << " " << R[0][1] << " " << R[0][2] << " " << t[0] << endl;
|
|
|
|
cout << R[1][0] << " " << R[1][1] << " " << R[1][2] << " " << t[1] << endl;
|
|
|
|
cout << R[2][0] << " " << R[2][1] << " " << R[2][2] << " " << t[2] << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::solve_for_sign(void)
|
|
|
|
{
|
|
|
|
if (pcs[2] < 0.0) {
|
|
|
|
for(int i = 0; i < 4; i++)
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
ccs[i][j] = -ccs[i][j];
|
|
|
|
|
|
|
|
for(int i = 0; i < number_of_correspondences; i++) {
|
|
|
|
pcs[3 * i ] = -pcs[3 * i];
|
|
|
|
pcs[3 * i + 1] = -pcs[3 * i + 1];
|
|
|
|
pcs[3 * i + 2] = -pcs[3 * i + 2];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double epnp::compute_R_and_t(const double * ut, const double * betas,
|
|
|
|
double R[3][3], double t[3])
|
|
|
|
{
|
|
|
|
compute_ccs(betas, ut);
|
|
|
|
compute_pcs();
|
|
|
|
|
|
|
|
solve_for_sign();
|
|
|
|
|
|
|
|
estimate_R_and_t(R, t);
|
|
|
|
|
|
|
|
return reprojection_error(R, t);
|
|
|
|
}
|
|
|
|
|
|
|
|
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
|
|
|
|
// betas_approx_1 = [B11 B12 B13 B14]
|
|
|
|
|
|
|
|
void epnp::find_betas_approx_1(const CvMat * L_6x10, const CvMat * Rho,
|
|
|
|
double * betas)
|
|
|
|
{
|
|
|
|
double l_6x4[6 * 4], b4[4];
|
|
|
|
CvMat L_6x4 = cvMat(6, 4, CV_64F, l_6x4);
|
|
|
|
CvMat B4 = cvMat(4, 1, CV_64F, b4);
|
|
|
|
|
|
|
|
for(int i = 0; i < 6; i++) {
|
|
|
|
cvmSet(&L_6x4, i, 0, cvmGet(L_6x10, i, 0));
|
|
|
|
cvmSet(&L_6x4, i, 1, cvmGet(L_6x10, i, 1));
|
|
|
|
cvmSet(&L_6x4, i, 2, cvmGet(L_6x10, i, 3));
|
|
|
|
cvmSet(&L_6x4, i, 3, cvmGet(L_6x10, i, 6));
|
|
|
|
}
|
|
|
|
|
|
|
|
cvSolve(&L_6x4, Rho, &B4, CV_SVD);
|
|
|
|
|
|
|
|
if (b4[0] < 0) {
|
|
|
|
betas[0] = sqrt(-b4[0]);
|
|
|
|
betas[1] = -b4[1] / betas[0];
|
|
|
|
betas[2] = -b4[2] / betas[0];
|
|
|
|
betas[3] = -b4[3] / betas[0];
|
|
|
|
} else {
|
|
|
|
betas[0] = sqrt(b4[0]);
|
|
|
|
betas[1] = b4[1] / betas[0];
|
|
|
|
betas[2] = b4[2] / betas[0];
|
|
|
|
betas[3] = b4[3] / betas[0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
|
|
|
|
// betas_approx_2 = [B11 B12 B22 ]
|
|
|
|
|
|
|
|
void epnp::find_betas_approx_2(const CvMat * L_6x10, const CvMat * Rho,
|
|
|
|
double * betas)
|
|
|
|
{
|
|
|
|
double l_6x3[6 * 3], b3[3];
|
|
|
|
CvMat L_6x3 = cvMat(6, 3, CV_64F, l_6x3);
|
|
|
|
CvMat B3 = cvMat(3, 1, CV_64F, b3);
|
|
|
|
|
|
|
|
for(int i = 0; i < 6; i++) {
|
|
|
|
cvmSet(&L_6x3, i, 0, cvmGet(L_6x10, i, 0));
|
|
|
|
cvmSet(&L_6x3, i, 1, cvmGet(L_6x10, i, 1));
|
|
|
|
cvmSet(&L_6x3, i, 2, cvmGet(L_6x10, i, 2));
|
|
|
|
}
|
|
|
|
|
|
|
|
cvSolve(&L_6x3, Rho, &B3, CV_SVD);
|
|
|
|
|
|
|
|
if (b3[0] < 0) {
|
|
|
|
betas[0] = sqrt(-b3[0]);
|
|
|
|
betas[1] = (b3[2] < 0) ? sqrt(-b3[2]) : 0.0;
|
|
|
|
} else {
|
|
|
|
betas[0] = sqrt(b3[0]);
|
|
|
|
betas[1] = (b3[2] > 0) ? sqrt(b3[2]) : 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (b3[1] < 0) betas[0] = -betas[0];
|
|
|
|
|
|
|
|
betas[2] = 0.0;
|
|
|
|
betas[3] = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// betas10 = [B11 B12 B22 B13 B23 B33 B14 B24 B34 B44]
|
|
|
|
// betas_approx_3 = [B11 B12 B22 B13 B23 ]
|
|
|
|
|
|
|
|
void epnp::find_betas_approx_3(const CvMat * L_6x10, const CvMat * Rho,
|
|
|
|
double * betas)
|
|
|
|
{
|
|
|
|
double l_6x5[6 * 5], b5[5];
|
|
|
|
CvMat L_6x5 = cvMat(6, 5, CV_64F, l_6x5);
|
|
|
|
CvMat B5 = cvMat(5, 1, CV_64F, b5);
|
|
|
|
|
|
|
|
for(int i = 0; i < 6; i++) {
|
|
|
|
cvmSet(&L_6x5, i, 0, cvmGet(L_6x10, i, 0));
|
|
|
|
cvmSet(&L_6x5, i, 1, cvmGet(L_6x10, i, 1));
|
|
|
|
cvmSet(&L_6x5, i, 2, cvmGet(L_6x10, i, 2));
|
|
|
|
cvmSet(&L_6x5, i, 3, cvmGet(L_6x10, i, 3));
|
|
|
|
cvmSet(&L_6x5, i, 4, cvmGet(L_6x10, i, 4));
|
|
|
|
}
|
|
|
|
|
|
|
|
cvSolve(&L_6x5, Rho, &B5, CV_SVD);
|
|
|
|
|
|
|
|
if (b5[0] < 0) {
|
|
|
|
betas[0] = sqrt(-b5[0]);
|
|
|
|
betas[1] = (b5[2] < 0) ? sqrt(-b5[2]) : 0.0;
|
|
|
|
} else {
|
|
|
|
betas[0] = sqrt(b5[0]);
|
|
|
|
betas[1] = (b5[2] > 0) ? sqrt(b5[2]) : 0.0;
|
|
|
|
}
|
|
|
|
if (b5[1] < 0) betas[0] = -betas[0];
|
|
|
|
betas[2] = b5[3] / betas[0];
|
|
|
|
betas[3] = 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::compute_L_6x10(const double * ut, double * l_6x10)
|
|
|
|
{
|
|
|
|
const double * v[4];
|
|
|
|
|
|
|
|
v[0] = ut + 12 * 11;
|
|
|
|
v[1] = ut + 12 * 10;
|
|
|
|
v[2] = ut + 12 * 9;
|
|
|
|
v[3] = ut + 12 * 8;
|
|
|
|
|
|
|
|
double dv[4][6][3];
|
|
|
|
|
|
|
|
for(int i = 0; i < 4; i++) {
|
|
|
|
int a = 0, b = 1;
|
|
|
|
for(int j = 0; j < 6; j++) {
|
|
|
|
dv[i][j][0] = v[i][3 * a ] - v[i][3 * b];
|
|
|
|
dv[i][j][1] = v[i][3 * a + 1] - v[i][3 * b + 1];
|
|
|
|
dv[i][j][2] = v[i][3 * a + 2] - v[i][3 * b + 2];
|
|
|
|
|
|
|
|
b++;
|
|
|
|
if (b > 3) {
|
|
|
|
a++;
|
|
|
|
b = a + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for(int i = 0; i < 6; i++) {
|
|
|
|
double * row = l_6x10 + 10 * i;
|
|
|
|
|
|
|
|
row[0] = dot(dv[0][i], dv[0][i]);
|
|
|
|
row[1] = 2.0f * dot(dv[0][i], dv[1][i]);
|
|
|
|
row[2] = dot(dv[1][i], dv[1][i]);
|
|
|
|
row[3] = 2.0f * dot(dv[0][i], dv[2][i]);
|
|
|
|
row[4] = 2.0f * dot(dv[1][i], dv[2][i]);
|
|
|
|
row[5] = dot(dv[2][i], dv[2][i]);
|
|
|
|
row[6] = 2.0f * dot(dv[0][i], dv[3][i]);
|
|
|
|
row[7] = 2.0f * dot(dv[1][i], dv[3][i]);
|
|
|
|
row[8] = 2.0f * dot(dv[2][i], dv[3][i]);
|
|
|
|
row[9] = dot(dv[3][i], dv[3][i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::compute_rho(double * rho)
|
|
|
|
{
|
|
|
|
rho[0] = dist2(cws[0], cws[1]);
|
|
|
|
rho[1] = dist2(cws[0], cws[2]);
|
|
|
|
rho[2] = dist2(cws[0], cws[3]);
|
|
|
|
rho[3] = dist2(cws[1], cws[2]);
|
|
|
|
rho[4] = dist2(cws[1], cws[3]);
|
|
|
|
rho[5] = dist2(cws[2], cws[3]);
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::compute_A_and_b_gauss_newton(const double * l_6x10, const double * rho,
|
|
|
|
double betas[4], CvMat * A, CvMat * b)
|
|
|
|
{
|
|
|
|
for(int i = 0; i < 6; i++) {
|
|
|
|
const double * rowL = l_6x10 + i * 10;
|
|
|
|
double * rowA = A->data.db + i * 4;
|
|
|
|
|
|
|
|
rowA[0] = 2 * rowL[0] * betas[0] + rowL[1] * betas[1] + rowL[3] * betas[2] + rowL[6] * betas[3];
|
|
|
|
rowA[1] = rowL[1] * betas[0] + 2 * rowL[2] * betas[1] + rowL[4] * betas[2] + rowL[7] * betas[3];
|
|
|
|
rowA[2] = rowL[3] * betas[0] + rowL[4] * betas[1] + 2 * rowL[5] * betas[2] + rowL[8] * betas[3];
|
|
|
|
rowA[3] = rowL[6] * betas[0] + rowL[7] * betas[1] + rowL[8] * betas[2] + 2 * rowL[9] * betas[3];
|
|
|
|
|
|
|
|
cvmSet(b, i, 0, rho[i] -
|
|
|
|
(
|
|
|
|
rowL[0] * betas[0] * betas[0] +
|
|
|
|
rowL[1] * betas[0] * betas[1] +
|
|
|
|
rowL[2] * betas[1] * betas[1] +
|
|
|
|
rowL[3] * betas[0] * betas[2] +
|
|
|
|
rowL[4] * betas[1] * betas[2] +
|
|
|
|
rowL[5] * betas[2] * betas[2] +
|
|
|
|
rowL[6] * betas[0] * betas[3] +
|
|
|
|
rowL[7] * betas[1] * betas[3] +
|
|
|
|
rowL[8] * betas[2] * betas[3] +
|
|
|
|
rowL[9] * betas[3] * betas[3]
|
|
|
|
));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::gauss_newton(const CvMat * L_6x10, const CvMat * Rho,
|
|
|
|
double betas[4])
|
|
|
|
{
|
|
|
|
const int iterations_number = 5;
|
|
|
|
|
|
|
|
double a[6*4], b[6], x[4];
|
|
|
|
CvMat A = cvMat(6, 4, CV_64F, a);
|
|
|
|
CvMat B = cvMat(6, 1, CV_64F, b);
|
|
|
|
CvMat X = cvMat(4, 1, CV_64F, x);
|
|
|
|
|
|
|
|
for(int k = 0; k < iterations_number; k++) {
|
|
|
|
compute_A_and_b_gauss_newton(L_6x10->data.db, Rho->data.db,
|
|
|
|
betas, &A, &B);
|
|
|
|
qr_solve(&A, &B, &X);
|
|
|
|
|
|
|
|
for(int i = 0; i < 4; i++)
|
|
|
|
betas[i] += x[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::qr_solve(CvMat * A, CvMat * b, CvMat * X)
|
|
|
|
{
|
|
|
|
static int max_nr = 0;
|
|
|
|
static double * A1, * A2;
|
|
|
|
|
|
|
|
const int nr = A->rows;
|
|
|
|
const int nc = A->cols;
|
|
|
|
|
|
|
|
if (max_nr != 0 && max_nr < nr) {
|
|
|
|
delete [] A1;
|
|
|
|
delete [] A2;
|
|
|
|
}
|
|
|
|
if (max_nr < nr) {
|
|
|
|
max_nr = nr;
|
|
|
|
A1 = new double[nr];
|
|
|
|
A2 = new double[nr];
|
|
|
|
}
|
|
|
|
|
|
|
|
double * pA = A->data.db, * ppAkk = pA;
|
|
|
|
for(int k = 0; k < nc; k++) {
|
|
|
|
double * ppAik = ppAkk, eta = fabs(*ppAik);
|
|
|
|
for(int i = k + 1; i < nr; i++) {
|
|
|
|
double elt = fabs(*ppAik);
|
|
|
|
if (eta < elt) eta = elt;
|
|
|
|
ppAik += nc;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (eta == 0) {
|
|
|
|
A1[k] = A2[k] = 0.0;
|
|
|
|
cerr << "God damnit, A is singular, this shouldn't happen." << endl;
|
|
|
|
return;
|
|
|
|
} else {
|
|
|
|
double * ppAik = ppAkk, sum = 0.0, inv_eta = 1. / eta;
|
|
|
|
for(int i = k; i < nr; i++) {
|
|
|
|
*ppAik *= inv_eta;
|
|
|
|
sum += *ppAik * *ppAik;
|
|
|
|
ppAik += nc;
|
|
|
|
}
|
|
|
|
double sigma = sqrt(sum);
|
|
|
|
if (*ppAkk < 0)
|
|
|
|
sigma = -sigma;
|
|
|
|
*ppAkk += sigma;
|
|
|
|
A1[k] = sigma * *ppAkk;
|
|
|
|
A2[k] = -eta * sigma;
|
|
|
|
for(int j = k + 1; j < nc; j++) {
|
|
|
|
double * ppAik = ppAkk, sum = 0;
|
|
|
|
for(int i = k; i < nr; i++) {
|
|
|
|
sum += *ppAik * ppAik[j - k];
|
|
|
|
ppAik += nc;
|
|
|
|
}
|
|
|
|
double tau = sum / A1[k];
|
|
|
|
ppAik = ppAkk;
|
|
|
|
for(int i = k; i < nr; i++) {
|
|
|
|
ppAik[j - k] -= tau * *ppAik;
|
|
|
|
ppAik += nc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ppAkk += nc + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// b <- Qt b
|
|
|
|
double * ppAjj = pA, * pb = b->data.db;
|
|
|
|
for(int j = 0; j < nc; j++) {
|
|
|
|
double * ppAij = ppAjj, tau = 0;
|
|
|
|
for(int i = j; i < nr; i++) {
|
|
|
|
tau += *ppAij * pb[i];
|
|
|
|
ppAij += nc;
|
|
|
|
}
|
|
|
|
tau /= A1[j];
|
|
|
|
ppAij = ppAjj;
|
|
|
|
for(int i = j; i < nr; i++) {
|
|
|
|
pb[i] -= tau * *ppAij;
|
|
|
|
ppAij += nc;
|
|
|
|
}
|
|
|
|
ppAjj += nc + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// X = R-1 b
|
|
|
|
double * pX = X->data.db;
|
|
|
|
pX[nc - 1] = pb[nc - 1] / A2[nc - 1];
|
|
|
|
for(int i = nc - 2; i >= 0; i--) {
|
|
|
|
double * ppAij = pA + i * nc + (i + 1), sum = 0;
|
|
|
|
|
|
|
|
for(int j = i + 1; j < nc; j++) {
|
|
|
|
sum += *ppAij * pX[j];
|
|
|
|
ppAij++;
|
|
|
|
}
|
|
|
|
pX[i] = (pb[i] - sum) / A2[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void epnp::relative_error(double & rot_err, double & transl_err,
|
|
|
|
const double Rtrue[3][3], const double ttrue[3],
|
|
|
|
const double Rest[3][3], const double test[3])
|
|
|
|
{
|
|
|
|
double qtrue[4], qest[4];
|
|
|
|
|
|
|
|
mat_to_quat(Rtrue, qtrue);
|
|
|
|
mat_to_quat(Rest, qest);
|
|
|
|
|
|
|
|
double rot_err1 = sqrt((qtrue[0] - qest[0]) * (qtrue[0] - qest[0]) +
|
|
|
|
(qtrue[1] - qest[1]) * (qtrue[1] - qest[1]) +
|
|
|
|
(qtrue[2] - qest[2]) * (qtrue[2] - qest[2]) +
|
|
|
|
(qtrue[3] - qest[3]) * (qtrue[3] - qest[3]) ) /
|
|
|
|
sqrt(qtrue[0] * qtrue[0] + qtrue[1] * qtrue[1] + qtrue[2] * qtrue[2] + qtrue[3] * qtrue[3]);
|
|
|
|
|
|
|
|
double rot_err2 = sqrt((qtrue[0] + qest[0]) * (qtrue[0] + qest[0]) +
|
|
|
|
(qtrue[1] + qest[1]) * (qtrue[1] + qest[1]) +
|
|
|
|
(qtrue[2] + qest[2]) * (qtrue[2] + qest[2]) +
|
|
|
|
(qtrue[3] + qest[3]) * (qtrue[3] + qest[3]) ) /
|
|
|
|
sqrt(qtrue[0] * qtrue[0] + qtrue[1] * qtrue[1] + qtrue[2] * qtrue[2] + qtrue[3] * qtrue[3]);
|
|
|
|
|
|
|
|
rot_err = min(rot_err1, rot_err2);
|
|
|
|
|
|
|
|
transl_err =
|
|
|
|
sqrt((ttrue[0] - test[0]) * (ttrue[0] - test[0]) +
|
|
|
|
(ttrue[1] - test[1]) * (ttrue[1] - test[1]) +
|
|
|
|
(ttrue[2] - test[2]) * (ttrue[2] - test[2])) /
|
|
|
|
sqrt(ttrue[0] * ttrue[0] + ttrue[1] * ttrue[1] + ttrue[2] * ttrue[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
void epnp::mat_to_quat(const double R[3][3], double q[4])
|
|
|
|
{
|
|
|
|
double tr = R[0][0] + R[1][1] + R[2][2];
|
|
|
|
double n4;
|
|
|
|
|
|
|
|
if (tr > 0.0f) {
|
|
|
|
q[0] = R[1][2] - R[2][1];
|
|
|
|
q[1] = R[2][0] - R[0][2];
|
|
|
|
q[2] = R[0][1] - R[1][0];
|
|
|
|
q[3] = tr + 1.0f;
|
|
|
|
n4 = q[3];
|
|
|
|
} else if ( (R[0][0] > R[1][1]) && (R[0][0] > R[2][2]) ) {
|
|
|
|
q[0] = 1.0f + R[0][0] - R[1][1] - R[2][2];
|
|
|
|
q[1] = R[1][0] + R[0][1];
|
|
|
|
q[2] = R[2][0] + R[0][2];
|
|
|
|
q[3] = R[1][2] - R[2][1];
|
|
|
|
n4 = q[0];
|
|
|
|
} else if (R[1][1] > R[2][2]) {
|
|
|
|
q[0] = R[1][0] + R[0][1];
|
|
|
|
q[1] = 1.0f + R[1][1] - R[0][0] - R[2][2];
|
|
|
|
q[2] = R[2][1] + R[1][2];
|
|
|
|
q[3] = R[2][0] - R[0][2];
|
|
|
|
n4 = q[1];
|
|
|
|
} else {
|
|
|
|
q[0] = R[2][0] + R[0][2];
|
|
|
|
q[1] = R[2][1] + R[1][2];
|
|
|
|
q[2] = 1.0f + R[2][2] - R[0][0] - R[1][1];
|
|
|
|
q[3] = R[0][1] - R[1][0];
|
|
|
|
n4 = q[2];
|
|
|
|
}
|
|
|
|
double scale = 0.5f / double(sqrt(n4));
|
|
|
|
|
|
|
|
q[0] *= scale;
|
|
|
|
q[1] *= scale;
|
|
|
|
q[2] *= scale;
|
|
|
|
q[3] *= scale;
|
|
|
|
}
|