2014-04-28 20:01:42 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2008, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
OpenCV wrapper of reference implementation of
|
|
|
|
[1] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces.
|
|
|
|
Pablo F. Alcantarilla, J. Nuevo and Adrien Bartoli.
|
|
|
|
In British Machine Vision Conference (BMVC), Bristol, UK, September 2013
|
|
|
|
http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pdf
|
|
|
|
@author Eugene Khvedchenya <ekhvedchenya@gmail.com>
|
|
|
|
*/
|
|
|
|
|
2014-04-05 15:25:46 +08:00
|
|
|
#include "precomp.hpp"
|
2014-04-28 21:34:35 +08:00
|
|
|
#include "akaze/AKAZEFeatures.h"
|
2014-04-05 15:25:46 +08:00
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
AKAZE::AKAZE(int _descriptor, int _descriptor_size, int _descriptor_channels)
|
|
|
|
: descriptor_channels(_descriptor_channels)
|
|
|
|
, descriptor(_descriptor)
|
|
|
|
, descriptor_size(_descriptor_size)
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
AKAZE::~AKAZE()
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns the descriptor size in bytes
|
|
|
|
int AKAZE::descriptorSize() const
|
|
|
|
{
|
|
|
|
if (descriptor < MLDB_UPRIGHT)
|
|
|
|
{
|
|
|
|
return 64;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// We use the full length binary descriptor -> 486 bits
|
|
|
|
if (descriptor_size == 0)
|
|
|
|
{
|
|
|
|
int t = (6 + 36 + 120) * descriptor_channels;
|
2014-04-28 20:00:14 +08:00
|
|
|
return (int)ceil(t / 8.);
|
2014-04-05 15:25:46 +08:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// We use the random bit selection length binary descriptor
|
2014-04-28 20:00:14 +08:00
|
|
|
return (int)ceil(descriptor_size / 8.);
|
2014-04-05 15:25:46 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns the descriptor type
|
|
|
|
int AKAZE::descriptorType() const
|
|
|
|
{
|
|
|
|
if (descriptor < MLDB_UPRIGHT)
|
|
|
|
{
|
2014-04-27 04:34:07 +08:00
|
|
|
return CV_32F;
|
2014-04-05 15:25:46 +08:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2014-04-27 04:34:07 +08:00
|
|
|
return CV_8U;
|
2014-04-05 15:25:46 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// returns the default norm type
|
|
|
|
int AKAZE::defaultNorm() const
|
|
|
|
{
|
|
|
|
if (descriptor < MLDB_UPRIGHT)
|
|
|
|
{
|
|
|
|
return NORM_L2;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
return NORM_HAMMING;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AKAZE::operator()(InputArray image, InputArray mask,
|
|
|
|
std::vector<KeyPoint>& keypoints,
|
|
|
|
OutputArray descriptors,
|
|
|
|
bool useProvidedKeypoints) const
|
|
|
|
{
|
|
|
|
cv::Mat img = image.getMat();
|
|
|
|
if (img.type() != CV_8UC1)
|
|
|
|
cvtColor(image, img, COLOR_BGR2GRAY);
|
|
|
|
|
|
|
|
Mat img1_32;
|
|
|
|
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
|
|
|
|
|
|
|
cv::Mat& desc = descriptors.getMatRef();
|
|
|
|
|
|
|
|
AKAZEOptions options;
|
|
|
|
options.img_width = img.cols;
|
|
|
|
options.img_height = img.rows;
|
|
|
|
|
|
|
|
AKAZEFeatures impl(options);
|
|
|
|
impl.Create_Nonlinear_Scale_Space(img1_32);
|
|
|
|
|
|
|
|
if (!useProvidedKeypoints)
|
|
|
|
{
|
|
|
|
impl.Feature_Detection(keypoints);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!mask.empty())
|
|
|
|
{
|
|
|
|
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
|
|
|
}
|
|
|
|
|
|
|
|
impl.Compute_Descriptors(keypoints, desc);
|
2014-04-28 15:51:09 +08:00
|
|
|
|
2014-04-28 21:23:58 +08:00
|
|
|
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
|
|
|
CV_Assert((!desc.rows || (desc.type() & descriptorType())));
|
2014-04-05 15:25:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void AKAZE::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
|
|
|
|
{
|
|
|
|
cv::Mat img = image.getMat();
|
|
|
|
if (img.type() != CV_8UC1)
|
|
|
|
cvtColor(image, img, COLOR_BGR2GRAY);
|
|
|
|
|
|
|
|
Mat img1_32;
|
|
|
|
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
|
|
|
|
|
|
|
AKAZEOptions options;
|
|
|
|
options.img_width = img.cols;
|
|
|
|
options.img_height = img.rows;
|
|
|
|
|
|
|
|
AKAZEFeatures impl(options);
|
|
|
|
impl.Create_Nonlinear_Scale_Space(img1_32);
|
|
|
|
impl.Feature_Detection(keypoints);
|
|
|
|
|
|
|
|
if (!mask.empty())
|
|
|
|
{
|
|
|
|
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void AKAZE::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
|
|
|
|
{
|
|
|
|
cv::Mat img = image.getMat();
|
|
|
|
if (img.type() != CV_8UC1)
|
|
|
|
cvtColor(image, img, COLOR_BGR2GRAY);
|
|
|
|
|
|
|
|
Mat img1_32;
|
|
|
|
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
|
|
|
|
|
|
|
|
cv::Mat& desc = descriptors.getMatRef();
|
|
|
|
|
|
|
|
AKAZEOptions options;
|
|
|
|
options.img_width = img.cols;
|
|
|
|
options.img_height = img.rows;
|
|
|
|
|
|
|
|
AKAZEFeatures impl(options);
|
|
|
|
impl.Create_Nonlinear_Scale_Space(img1_32);
|
|
|
|
impl.Compute_Descriptors(keypoints, desc);
|
|
|
|
|
2014-04-28 21:23:58 +08:00
|
|
|
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
|
|
|
|
CV_Assert((!desc.rows || (desc.type() & descriptorType())));
|
2014-04-05 15:25:46 +08:00
|
|
|
}
|
|
|
|
}
|