opencv/modules/imgcodecs/src/grfmt_avif.cpp

373 lines
12 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level
// directory of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
#ifdef HAVE_AVIF
#include <avif/avif.h>
#include <fstream>
#include <opencv2/core/utils/configuration.private.hpp>
#include "opencv2/imgproc.hpp"
#include "grfmt_avif.hpp"
#define CV_AVIF_USE_QUALITY \
(AVIF_VERSION > ((0 * 1000000) + (11 * 10000) + (1 * 100)))
#if !CV_AVIF_USE_QUALITY
#define AVIF_QUALITY_LOSSLESS 100
#define AVIF_QUALITY_WORST 0
#define AVIF_QUALITY_BEST 100
#endif
namespace cv {
namespace {
struct AvifImageDeleter {
void operator()(avifImage *image) { avifImageDestroy(image); }
};
using AvifImageUniquePtr = std::unique_ptr<avifImage, AvifImageDeleter>;
avifResult CopyToMat(const avifImage *image, int channels, Mat *mat) {
CV_Assert((int)image->height == mat->rows);
CV_Assert((int)image->width == mat->cols);
if (channels == 1) {
const cv::Mat image_wrap =
cv::Mat(image->height, image->width,
CV_MAKE_TYPE((image->depth == 8) ? CV_8U : CV_16U, 1),
image->yuvPlanes[0], image->yuvRowBytes[0]);
if ((image->depth == 8 && mat->depth() == CV_8U) ||
(image->depth > 8 && mat->depth() == CV_16U)) {
image_wrap.copyTo(*mat);
} else {
CV_Assert(image->depth > 8 && mat->depth() == CV_8U);
image_wrap.convertTo(*mat, CV_8U, 1. / (1 << (image->depth - 8)));
}
return AVIF_RESULT_OK;
}
avifRGBImage rgba;
avifRGBImageSetDefaults(&rgba, image);
if (channels == 3) {
rgba.format = AVIF_RGB_FORMAT_BGR;
} else {
CV_Assert(channels == 4);
rgba.format = AVIF_RGB_FORMAT_BGRA;
}
rgba.rowBytes = mat->step[0];
rgba.depth = (mat->depth() == CV_16U) ? image->depth : 8;
rgba.pixels = reinterpret_cast<uint8_t *>(mat->data);
return avifImageYUVToRGB(image, &rgba);
}
AvifImageUniquePtr ConvertToAvif(const cv::Mat &img, bool lossless,
int bit_depth) {
CV_Assert(img.depth() == CV_8U || img.depth() == CV_16U);
const int width = img.cols;
const int height = img.rows;
avifImage *result;
if (img.channels() == 1) {
result = avifImageCreateEmpty();
if (result == nullptr) return nullptr;
result->width = width;
result->height = height;
result->depth = bit_depth;
result->yuvFormat = AVIF_PIXEL_FORMAT_YUV400;
result->colorPrimaries = AVIF_COLOR_PRIMARIES_UNSPECIFIED;
result->transferCharacteristics = AVIF_TRANSFER_CHARACTERISTICS_UNSPECIFIED;
result->matrixCoefficients = AVIF_MATRIX_COEFFICIENTS_IDENTITY;
result->yuvRange = AVIF_RANGE_FULL;
result->yuvPlanes[0] = img.data;
result->yuvRowBytes[0] = img.step[0];
result->imageOwnsYUVPlanes = AVIF_FALSE;
return AvifImageUniquePtr(result);
}
if (lossless) {
result =
avifImageCreate(width, height, bit_depth, AVIF_PIXEL_FORMAT_YUV444);
if (result == nullptr) return nullptr;
result->colorPrimaries = AVIF_COLOR_PRIMARIES_UNSPECIFIED;
result->transferCharacteristics = AVIF_TRANSFER_CHARACTERISTICS_UNSPECIFIED;
result->matrixCoefficients = AVIF_MATRIX_COEFFICIENTS_IDENTITY;
result->yuvRange = AVIF_RANGE_FULL;
} else {
result =
avifImageCreate(width, height, bit_depth, AVIF_PIXEL_FORMAT_YUV420);
if (result == nullptr) return nullptr;
result->colorPrimaries = AVIF_COLOR_PRIMARIES_BT709;
result->transferCharacteristics = AVIF_TRANSFER_CHARACTERISTICS_SRGB;
result->matrixCoefficients = AVIF_MATRIX_COEFFICIENTS_BT601;
result->yuvRange = AVIF_RANGE_FULL;
}
avifRGBImage rgba;
avifRGBImageSetDefaults(&rgba, result);
if (img.channels() == 3) {
rgba.format = AVIF_RGB_FORMAT_BGR;
} else {
CV_Assert(img.channels() == 4);
rgba.format = AVIF_RGB_FORMAT_BGRA;
}
rgba.rowBytes = img.step[0];
rgba.depth = bit_depth;
rgba.pixels =
const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(img.data));
if (avifImageRGBToYUV(result, &rgba) != AVIF_RESULT_OK) {
avifImageDestroy(result);
return nullptr;
}
return AvifImageUniquePtr(result);
}
} // namespace
// 64Mb limit to avoid memory saturation.
static const size_t kParamMaxFileSize = utils::getConfigurationParameterSizeT(
"OPENCV_IMGCODECS_AVIF_MAX_FILE_SIZE", 64 * 1024 * 1024);
static constexpr size_t kAvifSignatureSize = 500;
AvifDecoder::AvifDecoder() {
m_buf_supported = true;
channels_ = 0;
decoder_ = avifDecoderCreate();
}
AvifDecoder::~AvifDecoder() {
if (decoder_ != nullptr) avifDecoderDestroy(decoder_);
}
size_t AvifDecoder::signatureLength() const { return kAvifSignatureSize; }
bool AvifDecoder::checkSignature(const String &signature) const {
avifDecoder *decoder = avifDecoderCreate();
if (!decoder) return false;
avifDecoderSetIOMemory(decoder,
reinterpret_cast<const uint8_t *>(signature.c_str()),
signature.size());
decoder->io->sizeHint = 1e9;
const avifResult status = avifDecoderParse(decoder);
avifDecoderDestroy(decoder);
return (status == AVIF_RESULT_OK || status == AVIF_RESULT_TRUNCATED_DATA);
}
#define OPENCV_AVIF_CHECK_STATUS(X, ENCDEC) \
{ \
const avifResult status = (X); \
if (status != AVIF_RESULT_OK) { \
const std::string error(ENCDEC->diag.error); \
CV_Error(Error::StsParseError, \
error + " " + avifResultToString(status)); \
return false; \
} \
}
ImageDecoder AvifDecoder::newDecoder() const { return makePtr<AvifDecoder>(); }
bool AvifDecoder::readHeader() {
if (!m_buf.empty()) {
CV_Assert(m_buf.type() == CV_8UC1);
CV_Assert(m_buf.rows == 1);
}
OPENCV_AVIF_CHECK_STATUS(
m_buf.empty()
? avifDecoderSetIOFile(decoder_, m_filename.c_str())
: avifDecoderSetIOMemory(
decoder_, reinterpret_cast<const uint8_t *>(m_buf.data),
m_buf.total()),
decoder_);
OPENCV_AVIF_CHECK_STATUS(avifDecoderParse(decoder_), decoder_);
m_width = decoder_->image->width;
m_height = decoder_->image->height;
channels_ = (decoder_->image->yuvFormat == AVIF_PIXEL_FORMAT_YUV400) ? 1 : 3;
if (decoder_->alphaPresent) ++channels_;
bit_depth_ = decoder_->image->depth;
CV_Assert(bit_depth_ == 8 || bit_depth_ == 10 || bit_depth_ == 12);
m_type = CV_MAKETYPE(bit_depth_ == 8 ? CV_8U : CV_16U, channels_);
is_first_image_ = true;
return true;
}
bool AvifDecoder::readData(Mat &img) {
CV_CheckGE(m_width, 0, "");
CV_CheckGE(m_height, 0, "");
CV_CheckEQ(img.cols, m_width, "");
CV_CheckEQ(img.rows, m_height, "");
CV_CheckType(
img.type(),
(img.channels() == 1 || img.channels() == 3 || img.channels() == 4) &&
(img.depth() == CV_8U || img.depth() == CV_16U),
"AVIF only supports 1, 3, 4 channels and CV_8U and CV_16U");
Mat read_img;
if (img.channels() == channels_) {
read_img = img;
} else {
// Use the asked depth but keep the number of channels. OpenCV and not
// libavif will do the color conversion.
read_img.create(m_height, m_width, CV_MAKE_TYPE(img.depth(), channels_));
}
if (is_first_image_) {
if (!nextPage()) return false;
is_first_image_ = false;
}
if (CopyToMat(decoder_->image, channels_, &read_img) != AVIF_RESULT_OK) {
CV_Error(Error::StsInternal, "Cannot convert from AVIF to Mat");
return false;
}
if (decoder_->image->exif.size > 0) {
m_exif.parseExif(decoder_->image->exif.data, decoder_->image->exif.size);
}
if (img.channels() == channels_) {
// We already wrote to the right buffer.
} else {
if (channels_ == 1 && img.channels() == 3) {
cvtColor(read_img, img, COLOR_GRAY2BGR);
} else if (channels_ == 1 && img.channels() == 4) {
cvtColor(read_img, img, COLOR_GRAY2BGRA);
} else if (channels_ == 3 && img.channels() == 1) {
cvtColor(read_img, img, COLOR_BGR2GRAY);
} else if (channels_ == 3 && img.channels() == 4) {
cvtColor(read_img, img, COLOR_BGR2BGRA);
} else if (channels_ == 4 && img.channels() == 1) {
cvtColor(read_img, img, COLOR_BGRA2GRAY);
} else if (channels_ == 4 && img.channels() == 3) {
cvtColor(read_img, img, COLOR_BGRA2BGR);
} else {
CV_Error(Error::StsInternal, "");
}
}
return true;
}
bool AvifDecoder::nextPage() {
const avifResult status = avifDecoderNextImage(decoder_);
if (status == AVIF_RESULT_NO_IMAGES_REMAINING) return false;
if (status != AVIF_RESULT_OK) {
const std::string error(decoder_->diag.error);
CV_Error(Error::StsParseError, error + " " + avifResultToString(status));
return false;
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
AvifEncoder::AvifEncoder() {
m_description = "AVIF files (*.avif)";
m_buf_supported = true;
encoder_ = avifEncoderCreate();
}
AvifEncoder::~AvifEncoder() {
if (encoder_) avifEncoderDestroy(encoder_);
}
bool AvifEncoder::isFormatSupported(int depth) const {
return (depth == CV_8U || depth == CV_16U);
}
bool AvifEncoder::write(const Mat &img, const std::vector<int> &params) {
std::vector<Mat> img_vec(1, img);
return writeToOutput(img_vec, params);
}
bool AvifEncoder::writemulti(const std::vector<Mat> &img_vec,
const std::vector<int> &params) {
return writeToOutput(img_vec, params);
}
bool AvifEncoder::writeToOutput(const std::vector<Mat> &img_vec,
const std::vector<int> &params) {
int bit_depth = 8;
int speed = AVIF_SPEED_FASTEST;
for (size_t i = 0; i < params.size(); i += 2) {
if (params[i] == IMWRITE_AVIF_QUALITY) {
const int quality = std::min(std::max(params[i + 1], AVIF_QUALITY_WORST),
AVIF_QUALITY_BEST);
#if CV_AVIF_USE_QUALITY
encoder_->quality = quality;
#else
encoder_->minQuantizer = encoder_->maxQuantizer =
(AVIF_QUANTIZER_BEST_QUALITY - AVIF_QUANTIZER_WORST_QUALITY) *
quality / (AVIF_QUALITY_BEST - AVIF_QUALITY_WORST) +
AVIF_QUANTIZER_WORST_QUALITY;
#endif
} else if (params[i] == IMWRITE_AVIF_DEPTH) {
bit_depth = params[i + 1];
} else if (params[i] == IMWRITE_AVIF_SPEED) {
speed = params[i + 1];
}
}
avifRWData output_ori = AVIF_DATA_EMPTY;
std::unique_ptr<avifRWData, decltype(&avifRWDataFree)> output(&output_ori,
avifRWDataFree);
#if CV_AVIF_USE_QUALITY
const bool do_lossless = (encoder_->quality == AVIF_QUALITY_LOSSLESS);
#else
const bool do_lossless =
(encoder_->minQuantizer == AVIF_QUANTIZER_BEST_QUALITY &&
encoder_->maxQuantizer == AVIF_QUANTIZER_BEST_QUALITY);
#endif
encoder_->speed = speed;
const avifAddImageFlags flag = (img_vec.size() == 1)
? AVIF_ADD_IMAGE_FLAG_SINGLE
: AVIF_ADD_IMAGE_FLAG_NONE;
std::vector<AvifImageUniquePtr> images;
std::vector<cv::Mat> imgs_scaled;
for (const cv::Mat &img : img_vec) {
CV_CheckType(
img.type(),
(bit_depth == 8 && img.depth() == CV_8U) ||
((bit_depth == 10 || bit_depth == 12) && img.depth() == CV_16U),
"AVIF only supports bit depth of 8 with CV_8U input or "
"bit depth of 10 or 12 with CV_16U input");
CV_Check(img.channels(),
img.channels() == 1 || img.channels() == 3 || img.channels() == 4,
"AVIF only supports 1, 3, 4 channels");
images.emplace_back(ConvertToAvif(img, do_lossless, bit_depth));
}
for (const AvifImageUniquePtr &image : images) {
OPENCV_AVIF_CHECK_STATUS(
avifEncoderAddImage(encoder_, image.get(), /*durationInTimescale=*/1,
flag),
encoder_);
}
OPENCV_AVIF_CHECK_STATUS(avifEncoderFinish(encoder_, output.get()), encoder_);
if (m_buf) {
m_buf->resize(output->size);
std::memcpy(m_buf->data(), output->data, output->size);
} else {
std::ofstream(m_filename, std::ofstream::binary)
.write(reinterpret_cast<char *>(output->data), output->size);
}
return (output->size > 0);
}
ImageEncoder AvifEncoder::newEncoder() const { return makePtr<AvifEncoder>(); }
} // namespace cv
#endif