mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 09:49:12 +08:00
139 lines
4.2 KiB
Markdown
139 lines
4.2 KiB
Markdown
|
AKAZE and ORB planar tracking {#tutorial_akaze_tracking}
|
||
|
=============================
|
||
|
|
||
|
Introduction
|
||
|
------------
|
||
|
|
||
|
In this tutorial we will compare *AKAZE* and *ORB* local features using them to find matches between
|
||
|
video frames and track object movements.
|
||
|
|
||
|
The algorithm is as follows:
|
||
|
|
||
|
- Detect and describe keypoints on the first frame, manually set object boundaries
|
||
|
- For every next frame:
|
||
|
1. Detect and describe keypoints
|
||
|
2. Match them using bruteforce matcher
|
||
|
3. Estimate homography transformation using RANSAC
|
||
|
4. Filter inliers from all the matches
|
||
|
5. Apply homography transformation to the bounding box to find the object
|
||
|
6. Draw bounding box and inliers, compute inlier ratio as evaluation metric
|
||
|
|
||
|
![image](images/frame.png)
|
||
|
|
||
|
### Data
|
||
|
|
||
|
To do the tracking we need a video and object position on the first frame.
|
||
|
|
||
|
You can download our example video and data from
|
||
|
[here](https://docs.google.com/file/d/0B72G7D4snftJandBb0taLVJHMFk).
|
||
|
|
||
|
To run the code you have to specify input and output video path and object bounding box.
|
||
|
@code{.none}
|
||
|
./planar_tracking blais.mp4 result.avi blais_bb.xml.gz
|
||
|
@endcode
|
||
|
### Source Code
|
||
|
|
||
|
@includelineno cpp/tutorial_code/features2D/AKAZE_tracking/planar_tracking.cpp
|
||
|
|
||
|
### Explanation
|
||
|
|
||
|
Tracker class
|
||
|
-------------
|
||
|
|
||
|
This class implements algorithm described abobve using given feature detector and descriptor
|
||
|
matcher.
|
||
|
|
||
|
- **Setting up the first frame**
|
||
|
@code{.cpp}
|
||
|
void Tracker::setFirstFrame(const Mat frame, vector<Point2f> bb, string title, Stats& stats)
|
||
|
{
|
||
|
first_frame = frame.clone();
|
||
|
(*detector)(first_frame, noArray(), first_kp, first_desc);
|
||
|
stats.keypoints = (int)first_kp.size();
|
||
|
drawBoundingBox(first_frame, bb);
|
||
|
putText(first_frame, title, Point(0, 60), FONT_HERSHEY_PLAIN, 5, Scalar::all(0), 4);
|
||
|
object_bb = bb;
|
||
|
}
|
||
|
@endcode
|
||
|
We compute and store keypoints and descriptors from the first frame and prepare it for the
|
||
|
output.
|
||
|
|
||
|
We need to save number of detected keypoints to make sure both detectors locate roughly the same
|
||
|
number of those.
|
||
|
|
||
|
- **Processing frames**
|
||
|
|
||
|
1. Locate keypoints and compute descriptors
|
||
|
@code{.cpp}
|
||
|
(*detector)(frame, noArray(), kp, desc);
|
||
|
@endcode
|
||
|
|
||
|
To find matches between frames we have to locate the keypoints first.
|
||
|
|
||
|
In this tutorial detectors are set up to find about 1000 keypoints on each frame.
|
||
|
|
||
|
1. Use 2-nn matcher to find correspondences
|
||
|
@code{.cpp}
|
||
|
matcher->knnMatch(first_desc, desc, matches, 2);
|
||
|
for(unsigned i = 0; i < matches.size(); i++) {
|
||
|
if(matches[i][0].distance < nn_match_ratio * matches[i][1].distance) {
|
||
|
matched1.push_back(first_kp[matches[i][0].queryIdx]);
|
||
|
matched2.push_back( kp[matches[i][0].trainIdx]);
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
|
||
|
If the closest match is *nn_match_ratio* closer than the second closest one, then it's a
|
||
|
match.
|
||
|
|
||
|
2. Use *RANSAC* to estimate homography transformation
|
||
|
@code{.cpp}
|
||
|
homography = findHomography(Points(matched1), Points(matched2),
|
||
|
RANSAC, ransac_thresh, inlier_mask);
|
||
|
@endcode
|
||
|
|
||
|
If there are at least 4 matches we can use random sample consensus to estimate image
|
||
|
transformation.
|
||
|
|
||
|
3. Save the inliers
|
||
|
@code{.cpp}
|
||
|
for(unsigned i = 0; i < matched1.size(); i++) {
|
||
|
if(inlier_mask.at<uchar>(i)) {
|
||
|
int new_i = static_cast<int>(inliers1.size());
|
||
|
inliers1.push_back(matched1[i]);
|
||
|
inliers2.push_back(matched2[i]);
|
||
|
inlier_matches.push_back(DMatch(new_i, new_i, 0));
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
|
||
|
Since *findHomography* computes the inliers we only have to save the chosen points and
|
||
|
matches.
|
||
|
|
||
|
4. Project object bounding box
|
||
|
@code{.cpp}
|
||
|
perspectiveTransform(object_bb, new_bb, homography);
|
||
|
@endcode
|
||
|
|
||
|
If there is a reasonable number of inliers we can use estimated transformation to locate the
|
||
|
object.
|
||
|
|
||
|
### Results
|
||
|
|
||
|
You can watch the resulting [video on youtube](http://www.youtube.com/watch?v=LWY-w8AGGhE).
|
||
|
|
||
|
*AKAZE* statistics:
|
||
|
@code{.none}
|
||
|
Matches 626
|
||
|
Inliers 410
|
||
|
Inlier ratio 0.58
|
||
|
Keypoints 1117
|
||
|
@endcode
|
||
|
*ORB* statistics:
|
||
|
@code{.none}
|
||
|
Matches 504
|
||
|
Inliers 319
|
||
|
Inlier ratio 0.56
|
||
|
Keypoints 1112
|
||
|
@endcode
|