mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
1791 lines
28 KiB
Plaintext
1791 lines
28 KiB
Plaintext
|
# This file is based on deploy.prototxt but might be used for input resolution less than 300x300
|
||
|
input: "data"
|
||
|
input_shape {
|
||
|
dim: 1
|
||
|
dim: 3
|
||
|
dim: 300
|
||
|
dim: 300
|
||
|
}
|
||
|
|
||
|
layer {
|
||
|
name: "data_bn"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "data"
|
||
|
top: "data_bn"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "data_scale"
|
||
|
type: "Scale"
|
||
|
bottom: "data_bn"
|
||
|
top: "data_bn"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "data_bn"
|
||
|
top: "conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 32
|
||
|
pad: 3
|
||
|
kernel_size: 7
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
variance_norm: FAN_OUT
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_bn_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "conv1_h"
|
||
|
top: "conv1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_scale_h"
|
||
|
type: "Scale"
|
||
|
bottom: "conv1_h"
|
||
|
top: "conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv1_h"
|
||
|
top: "conv1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_pool"
|
||
|
type: "Pooling"
|
||
|
bottom: "conv1_h"
|
||
|
top: "conv1_pool"
|
||
|
pooling_param {
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_conv1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv1_pool"
|
||
|
top: "layer_64_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 32
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_bn2_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_64_1_conv1_h"
|
||
|
top: "layer_64_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_scale2_h"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_64_1_conv1_h"
|
||
|
top: "layer_64_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_relu2"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_64_1_conv1_h"
|
||
|
top: "layer_64_1_conv1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_conv2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_64_1_conv1_h"
|
||
|
top: "layer_64_1_conv2_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 32
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_sum"
|
||
|
type: "Eltwise"
|
||
|
bottom: "layer_64_1_conv2_h"
|
||
|
bottom: "conv1_pool"
|
||
|
top: "layer_64_1_sum"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_bn1_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_64_1_sum"
|
||
|
top: "layer_128_1_bn1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_scale1_h"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_128_1_bn1_h"
|
||
|
top: "layer_128_1_bn1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_relu1"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_128_1_bn1_h"
|
||
|
top: "layer_128_1_bn1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_conv1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_128_1_bn1_h"
|
||
|
top: "layer_128_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_bn2"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_128_1_conv1_h"
|
||
|
top: "layer_128_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_scale2"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_128_1_conv1_h"
|
||
|
top: "layer_128_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_relu2"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_128_1_conv1_h"
|
||
|
top: "layer_128_1_conv1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_conv2"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_128_1_conv1_h"
|
||
|
top: "layer_128_1_conv2"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_conv_expand_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_128_1_bn1_h"
|
||
|
top: "layer_128_1_conv_expand_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
bias_term: false
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_sum"
|
||
|
type: "Eltwise"
|
||
|
bottom: "layer_128_1_conv2"
|
||
|
bottom: "layer_128_1_conv_expand_h"
|
||
|
top: "layer_128_1_sum"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_bn1"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_128_1_sum"
|
||
|
top: "layer_256_1_bn1"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_scale1"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "layer_256_1_bn1"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_relu1"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "layer_256_1_bn1"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_conv1"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "layer_256_1_conv1"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_bn2"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_256_1_conv1"
|
||
|
top: "layer_256_1_conv1"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_scale2"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_256_1_conv1"
|
||
|
top: "layer_256_1_conv1"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_relu2"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_256_1_conv1"
|
||
|
top: "layer_256_1_conv1"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_conv2"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_256_1_conv1"
|
||
|
top: "layer_256_1_conv2"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_conv_expand"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "layer_256_1_conv_expand"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_sum"
|
||
|
type: "Eltwise"
|
||
|
bottom: "layer_256_1_conv2"
|
||
|
bottom: "layer_256_1_conv_expand"
|
||
|
top: "layer_256_1_sum"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_bn1"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_256_1_sum"
|
||
|
top: "layer_512_1_bn1"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_scale1"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_512_1_bn1"
|
||
|
top: "layer_512_1_bn1"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_relu1"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_512_1_bn1"
|
||
|
top: "layer_512_1_bn1"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_conv1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_512_1_bn1"
|
||
|
top: "layer_512_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1 # 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_bn2_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_512_1_conv1_h"
|
||
|
top: "layer_512_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_scale2_h"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_512_1_conv1_h"
|
||
|
top: "layer_512_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_relu2"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_512_1_conv1_h"
|
||
|
top: "layer_512_1_conv1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_conv2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_512_1_conv1_h"
|
||
|
top: "layer_512_1_conv2_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 2 # 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
dilation: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_conv_expand_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_512_1_bn1"
|
||
|
top: "layer_512_1_conv_expand_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1 # 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_sum"
|
||
|
type: "Eltwise"
|
||
|
bottom: "layer_512_1_conv2_h"
|
||
|
bottom: "layer_512_1_conv_expand_h"
|
||
|
top: "layer_512_1_sum"
|
||
|
}
|
||
|
layer {
|
||
|
name: "last_bn_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_512_1_sum"
|
||
|
top: "layer_512_1_sum"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "last_scale_h"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_512_1_sum"
|
||
|
top: "layer_512_1_sum"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "last_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_512_1_sum"
|
||
|
top: "fc7"
|
||
|
}
|
||
|
|
||
|
layer {
|
||
|
name: "conv6_1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "fc7"
|
||
|
top: "conv6_1_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv6_1_h"
|
||
|
top: "conv6_1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv6_1_h"
|
||
|
top: "conv6_2_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv6_2_h"
|
||
|
top: "conv6_2_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv6_2_h"
|
||
|
top: "conv7_1_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 64
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv7_1_h"
|
||
|
top: "conv7_1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv7_1_h"
|
||
|
top: "conv7_2_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv7_2_h"
|
||
|
top: "conv7_2_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv7_2_h"
|
||
|
top: "conv8_1_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 64
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv8_1_h"
|
||
|
top: "conv8_1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv8_1_h"
|
||
|
top: "conv8_2_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
pad: 0
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv8_2_h"
|
||
|
top: "conv8_2_h"
|
||
|
}
|
||
|
# layer {
|
||
|
# name: "conv9_1_h"
|
||
|
# type: "Convolution"
|
||
|
# bottom: "conv8_2_h"
|
||
|
# top: "conv9_1_h"
|
||
|
# param {
|
||
|
# lr_mult: 1
|
||
|
# decay_mult: 1
|
||
|
# }
|
||
|
# param {
|
||
|
# lr_mult: 2
|
||
|
# decay_mult: 0
|
||
|
# }
|
||
|
# convolution_param {
|
||
|
# num_output: 64
|
||
|
# pad: 0
|
||
|
# kernel_size: 1
|
||
|
# stride: 1
|
||
|
# weight_filler {
|
||
|
# type: "xavier"
|
||
|
# }
|
||
|
# bias_filler {
|
||
|
# type: "constant"
|
||
|
# value: 0
|
||
|
# }
|
||
|
# }
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_1_relu"
|
||
|
# type: "ReLU"
|
||
|
# bottom: "conv9_1_h"
|
||
|
# top: "conv9_1_h"
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_2_h"
|
||
|
# type: "Convolution"
|
||
|
# bottom: "conv9_1_h"
|
||
|
# top: "conv9_2_h"
|
||
|
# param {
|
||
|
# lr_mult: 1
|
||
|
# decay_mult: 1
|
||
|
# }
|
||
|
# param {
|
||
|
# lr_mult: 2
|
||
|
# decay_mult: 0
|
||
|
# }
|
||
|
# convolution_param {
|
||
|
# num_output: 128
|
||
|
# pad: 0
|
||
|
# kernel_size: 3
|
||
|
# stride: 1
|
||
|
# weight_filler {
|
||
|
# type: "xavier"
|
||
|
# }
|
||
|
# bias_filler {
|
||
|
# type: "constant"
|
||
|
# value: 0
|
||
|
# }
|
||
|
# }
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_2_relu"
|
||
|
# type: "ReLU"
|
||
|
# bottom: "conv9_2_h"
|
||
|
# top: "conv9_2_h"
|
||
|
# }
|
||
|
layer {
|
||
|
name: "conv4_3_norm"
|
||
|
type: "Normalize"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "conv4_3_norm"
|
||
|
norm_param {
|
||
|
across_spatial: false
|
||
|
scale_filler {
|
||
|
type: "constant"
|
||
|
value: 20
|
||
|
}
|
||
|
channel_shared: false
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv4_3_norm"
|
||
|
top: "conv4_3_norm_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 16
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv4_3_norm_mbox_loc"
|
||
|
top: "conv4_3_norm_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv4_3_norm_mbox_loc_perm"
|
||
|
top: "conv4_3_norm_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv4_3_norm"
|
||
|
top: "conv4_3_norm_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 8 # 84
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv4_3_norm_mbox_conf"
|
||
|
top: "conv4_3_norm_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv4_3_norm_mbox_conf_perm"
|
||
|
top: "conv4_3_norm_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv4_3_norm"
|
||
|
bottom: "data"
|
||
|
top: "conv4_3_norm_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 30.0
|
||
|
max_size: 60.0
|
||
|
aspect_ratio: 2
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 8
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "fc7"
|
||
|
top: "fc7_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 24
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "fc7_mbox_loc"
|
||
|
top: "fc7_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "fc7_mbox_loc_perm"
|
||
|
top: "fc7_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "fc7"
|
||
|
top: "fc7_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 12 # 126
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "fc7_mbox_conf"
|
||
|
top: "fc7_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "fc7_mbox_conf_perm"
|
||
|
top: "fc7_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "fc7"
|
||
|
bottom: "data"
|
||
|
top: "fc7_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 60.0
|
||
|
max_size: 111.0
|
||
|
aspect_ratio: 2
|
||
|
aspect_ratio: 3
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 16
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv6_2_h"
|
||
|
top: "conv6_2_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 24
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv6_2_mbox_loc"
|
||
|
top: "conv6_2_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv6_2_mbox_loc_perm"
|
||
|
top: "conv6_2_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv6_2_h"
|
||
|
top: "conv6_2_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 12 # 126
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv6_2_mbox_conf"
|
||
|
top: "conv6_2_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv6_2_mbox_conf_perm"
|
||
|
top: "conv6_2_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv6_2_h"
|
||
|
bottom: "data"
|
||
|
top: "conv6_2_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 111.0
|
||
|
max_size: 162.0
|
||
|
aspect_ratio: 2
|
||
|
aspect_ratio: 3
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 32
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv7_2_h"
|
||
|
top: "conv7_2_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 24
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv7_2_mbox_loc"
|
||
|
top: "conv7_2_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv7_2_mbox_loc_perm"
|
||
|
top: "conv7_2_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv7_2_h"
|
||
|
top: "conv7_2_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 12 # 126
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv7_2_mbox_conf"
|
||
|
top: "conv7_2_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv7_2_mbox_conf_perm"
|
||
|
top: "conv7_2_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv7_2_h"
|
||
|
bottom: "data"
|
||
|
top: "conv7_2_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 162.0
|
||
|
max_size: 213.0
|
||
|
aspect_ratio: 2
|
||
|
aspect_ratio: 3
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 64
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv8_2_h"
|
||
|
top: "conv8_2_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 16
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv8_2_mbox_loc"
|
||
|
top: "conv8_2_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv8_2_mbox_loc_perm"
|
||
|
top: "conv8_2_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv8_2_h"
|
||
|
top: "conv8_2_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 8 # 84
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv8_2_mbox_conf"
|
||
|
top: "conv8_2_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv8_2_mbox_conf_perm"
|
||
|
top: "conv8_2_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv8_2_h"
|
||
|
bottom: "data"
|
||
|
top: "conv8_2_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 213.0
|
||
|
max_size: 264.0
|
||
|
aspect_ratio: 2
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 100
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
# layer {
|
||
|
# name: "conv9_2_mbox_loc"
|
||
|
# type: "Convolution"
|
||
|
# bottom: "conv9_2_h"
|
||
|
# top: "conv9_2_mbox_loc"
|
||
|
# param {
|
||
|
# lr_mult: 1
|
||
|
# decay_mult: 1
|
||
|
# }
|
||
|
# param {
|
||
|
# lr_mult: 2
|
||
|
# decay_mult: 0
|
||
|
# }
|
||
|
# convolution_param {
|
||
|
# num_output: 16
|
||
|
# pad: 1
|
||
|
# kernel_size: 3
|
||
|
# stride: 1
|
||
|
# weight_filler {
|
||
|
# type: "xavier"
|
||
|
# }
|
||
|
# bias_filler {
|
||
|
# type: "constant"
|
||
|
# value: 0
|
||
|
# }
|
||
|
# }
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_2_mbox_loc_perm"
|
||
|
# type: "Permute"
|
||
|
# bottom: "conv9_2_mbox_loc"
|
||
|
# top: "conv9_2_mbox_loc_perm"
|
||
|
# permute_param {
|
||
|
# order: 0
|
||
|
# order: 2
|
||
|
# order: 3
|
||
|
# order: 1
|
||
|
# }
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_2_mbox_loc_flat"
|
||
|
# type: "Flatten"
|
||
|
# bottom: "conv9_2_mbox_loc_perm"
|
||
|
# top: "conv9_2_mbox_loc_flat"
|
||
|
# flatten_param {
|
||
|
# axis: 1
|
||
|
# }
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_2_mbox_conf"
|
||
|
# type: "Convolution"
|
||
|
# bottom: "conv9_2_h"
|
||
|
# top: "conv9_2_mbox_conf"
|
||
|
# param {
|
||
|
# lr_mult: 1
|
||
|
# decay_mult: 1
|
||
|
# }
|
||
|
# param {
|
||
|
# lr_mult: 2
|
||
|
# decay_mult: 0
|
||
|
# }
|
||
|
# convolution_param {
|
||
|
# num_output: 8 # 84
|
||
|
# pad: 1
|
||
|
# kernel_size: 3
|
||
|
# stride: 1
|
||
|
# weight_filler {
|
||
|
# type: "xavier"
|
||
|
# }
|
||
|
# bias_filler {
|
||
|
# type: "constant"
|
||
|
# value: 0
|
||
|
# }
|
||
|
# }
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_2_mbox_conf_perm"
|
||
|
# type: "Permute"
|
||
|
# bottom: "conv9_2_mbox_conf"
|
||
|
# top: "conv9_2_mbox_conf_perm"
|
||
|
# permute_param {
|
||
|
# order: 0
|
||
|
# order: 2
|
||
|
# order: 3
|
||
|
# order: 1
|
||
|
# }
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_2_mbox_conf_flat"
|
||
|
# type: "Flatten"
|
||
|
# bottom: "conv9_2_mbox_conf_perm"
|
||
|
# top: "conv9_2_mbox_conf_flat"
|
||
|
# flatten_param {
|
||
|
# axis: 1
|
||
|
# }
|
||
|
# }
|
||
|
# layer {
|
||
|
# name: "conv9_2_mbox_priorbox"
|
||
|
# type: "PriorBox"
|
||
|
# bottom: "conv9_2_h"
|
||
|
# bottom: "data"
|
||
|
# top: "conv9_2_mbox_priorbox"
|
||
|
# prior_box_param {
|
||
|
# min_size: 264.0
|
||
|
# max_size: 315.0
|
||
|
# aspect_ratio: 2
|
||
|
# flip: true
|
||
|
# clip: false
|
||
|
# variance: 0.1
|
||
|
# variance: 0.1
|
||
|
# variance: 0.2
|
||
|
# variance: 0.2
|
||
|
# step: 300
|
||
|
# offset: 0.5
|
||
|
# }
|
||
|
# }
|
||
|
layer {
|
||
|
name: "mbox_loc"
|
||
|
type: "Concat"
|
||
|
bottom: "conv4_3_norm_mbox_loc_flat"
|
||
|
bottom: "fc7_mbox_loc_flat"
|
||
|
bottom: "conv6_2_mbox_loc_flat"
|
||
|
bottom: "conv7_2_mbox_loc_flat"
|
||
|
bottom: "conv8_2_mbox_loc_flat"
|
||
|
# bottom: "conv9_2_mbox_loc_flat"
|
||
|
top: "mbox_loc"
|
||
|
concat_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "mbox_conf"
|
||
|
type: "Concat"
|
||
|
bottom: "conv4_3_norm_mbox_conf_flat"
|
||
|
bottom: "fc7_mbox_conf_flat"
|
||
|
bottom: "conv6_2_mbox_conf_flat"
|
||
|
bottom: "conv7_2_mbox_conf_flat"
|
||
|
bottom: "conv8_2_mbox_conf_flat"
|
||
|
# bottom: "conv9_2_mbox_conf_flat"
|
||
|
top: "mbox_conf"
|
||
|
concat_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "mbox_priorbox"
|
||
|
type: "Concat"
|
||
|
bottom: "conv4_3_norm_mbox_priorbox"
|
||
|
bottom: "fc7_mbox_priorbox"
|
||
|
bottom: "conv6_2_mbox_priorbox"
|
||
|
bottom: "conv7_2_mbox_priorbox"
|
||
|
bottom: "conv8_2_mbox_priorbox"
|
||
|
# bottom: "conv9_2_mbox_priorbox"
|
||
|
top: "mbox_priorbox"
|
||
|
concat_param {
|
||
|
axis: 2
|
||
|
}
|
||
|
}
|
||
|
|
||
|
layer {
|
||
|
name: "mbox_conf_reshape"
|
||
|
type: "Reshape"
|
||
|
bottom: "mbox_conf"
|
||
|
top: "mbox_conf_reshape"
|
||
|
reshape_param {
|
||
|
shape {
|
||
|
dim: 0
|
||
|
dim: -1
|
||
|
dim: 2
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "mbox_conf_softmax"
|
||
|
type: "Softmax"
|
||
|
bottom: "mbox_conf_reshape"
|
||
|
top: "mbox_conf_softmax"
|
||
|
softmax_param {
|
||
|
axis: 2
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "mbox_conf_flatten"
|
||
|
type: "Flatten"
|
||
|
bottom: "mbox_conf_softmax"
|
||
|
top: "mbox_conf_flatten"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
|
||
|
layer {
|
||
|
name: "detection_out"
|
||
|
type: "DetectionOutput"
|
||
|
bottom: "mbox_loc"
|
||
|
bottom: "mbox_conf_flatten"
|
||
|
bottom: "mbox_priorbox"
|
||
|
top: "detection_out"
|
||
|
include {
|
||
|
phase: TEST
|
||
|
}
|
||
|
detection_output_param {
|
||
|
num_classes: 2
|
||
|
share_location: true
|
||
|
background_label_id: 0
|
||
|
nms_param {
|
||
|
nms_threshold: 0.45
|
||
|
top_k: 400
|
||
|
}
|
||
|
code_type: CENTER_SIZE
|
||
|
keep_top_k: 200
|
||
|
confidence_threshold: 0.01
|
||
|
}
|
||
|
}
|