2017-06-07 01:22:30 +08:00
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
using namespace std::tr1;
|
|
|
|
|
|
|
|
#ifdef HAVE_JPEG
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Test for check whether reading exif orientation tag was processed successfully or not
|
|
|
|
* The test info is the set of 8 images named testExifRotate_{1 to 8}.jpg
|
|
|
|
* The test image is the square 10x10 points divided by four sub-squares:
|
|
|
|
* (R corresponds to Red, G to Green, B to Blue, W to white)
|
|
|
|
* --------- ---------
|
|
|
|
* | R | G | | G | R |
|
|
|
|
* |-------| - (tag 1) |-------| - (tag 2)
|
|
|
|
* | B | W | | W | B |
|
|
|
|
* --------- ---------
|
|
|
|
*
|
|
|
|
* --------- ---------
|
|
|
|
* | W | B | | B | W |
|
|
|
|
* |-------| - (tag 3) |-------| - (tag 4)
|
|
|
|
* | G | R | | R | G |
|
|
|
|
* --------- ---------
|
|
|
|
*
|
|
|
|
* --------- ---------
|
|
|
|
* | R | B | | G | W |
|
|
|
|
* |-------| - (tag 5) |-------| - (tag 6)
|
|
|
|
* | G | W | | R | B |
|
|
|
|
* --------- ---------
|
|
|
|
*
|
|
|
|
* --------- ---------
|
|
|
|
* | W | G | | B | R |
|
|
|
|
* |-------| - (tag 7) |-------| - (tag 8)
|
|
|
|
* | B | R | | W | G |
|
|
|
|
* --------- ---------
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Every image contains exif field with orientation tag (0x112)
|
|
|
|
* After reading each image the corresponding matrix must be read as
|
|
|
|
* ---------
|
|
|
|
* | R | G |
|
|
|
|
* |-------|
|
|
|
|
* | B | W |
|
|
|
|
* ---------
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<string> Imgcodecs_Jpeg_Exif;
|
|
|
|
|
|
|
|
TEST_P(Imgcodecs_Jpeg_Exif, exif_orientation)
|
|
|
|
{
|
|
|
|
const string root = cvtest::TS::ptr()->get_data_path();
|
|
|
|
const string filename = root + GetParam();
|
|
|
|
const int colorThresholdHigh = 250;
|
|
|
|
const int colorThresholdLow = 5;
|
|
|
|
|
|
|
|
Mat m_img = imread(filename);
|
|
|
|
ASSERT_FALSE(m_img.empty());
|
|
|
|
Vec3b vec;
|
|
|
|
|
|
|
|
//Checking the first quadrant (with supposed red)
|
|
|
|
vec = m_img.at<Vec3b>(2, 2); //some point inside the square
|
|
|
|
EXPECT_LE(vec.val[0], colorThresholdLow);
|
|
|
|
EXPECT_LE(vec.val[1], colorThresholdLow);
|
|
|
|
EXPECT_GE(vec.val[2], colorThresholdHigh);
|
|
|
|
|
|
|
|
//Checking the second quadrant (with supposed green)
|
|
|
|
vec = m_img.at<Vec3b>(2, 7); //some point inside the square
|
|
|
|
EXPECT_LE(vec.val[0], colorThresholdLow);
|
|
|
|
EXPECT_GE(vec.val[1], colorThresholdHigh);
|
|
|
|
EXPECT_LE(vec.val[2], colorThresholdLow);
|
|
|
|
|
|
|
|
//Checking the third quadrant (with supposed blue)
|
|
|
|
vec = m_img.at<Vec3b>(7, 2); //some point inside the square
|
|
|
|
EXPECT_GE(vec.val[0], colorThresholdHigh);
|
|
|
|
EXPECT_LE(vec.val[1], colorThresholdLow);
|
|
|
|
EXPECT_LE(vec.val[2], colorThresholdLow);
|
|
|
|
}
|
|
|
|
|
|
|
|
const string exif_files[] =
|
|
|
|
{
|
|
|
|
"readwrite/testExifOrientation_1.jpg",
|
|
|
|
"readwrite/testExifOrientation_2.jpg",
|
|
|
|
"readwrite/testExifOrientation_3.jpg",
|
|
|
|
"readwrite/testExifOrientation_4.jpg",
|
|
|
|
"readwrite/testExifOrientation_5.jpg",
|
|
|
|
"readwrite/testExifOrientation_6.jpg",
|
|
|
|
"readwrite/testExifOrientation_7.jpg",
|
|
|
|
"readwrite/testExifOrientation_8.jpg"
|
|
|
|
};
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(ExifFiles, Imgcodecs_Jpeg_Exif,
|
|
|
|
testing::ValuesIn(exif_files));
|
|
|
|
|
|
|
|
//==================================================================================================
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Jpeg, encode_empty)
|
|
|
|
{
|
|
|
|
cv::Mat img;
|
|
|
|
std::vector<uchar> jpegImg;
|
|
|
|
ASSERT_THROW(cv::imencode(".jpg", img, jpegImg), cv::Exception);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_progressive_jpeg)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(IMWRITE_JPEG_PROGRESSIVE);
|
|
|
|
params.push_back(1);
|
|
|
|
|
|
|
|
string output_progressive = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_progressive, img, params));
|
|
|
|
cv::Mat img_jpg_progressive = cv::imread(output_progressive);
|
|
|
|
|
|
|
|
string output_normal = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
|
|
|
|
cv::Mat img_jpg_normal = cv::imread(output_normal);
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_progressive, img_jpg_normal, NORM_INF));
|
|
|
|
|
2017-08-16 18:53:12 +08:00
|
|
|
EXPECT_EQ(0, remove(output_progressive.c_str()));
|
|
|
|
EXPECT_EQ(0, remove(output_normal.c_str()));
|
2017-06-07 01:22:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_optimize_jpeg)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(IMWRITE_JPEG_OPTIMIZE);
|
|
|
|
params.push_back(1);
|
|
|
|
|
|
|
|
string output_optimized = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_optimized, img, params));
|
|
|
|
cv::Mat img_jpg_optimized = cv::imread(output_optimized);
|
|
|
|
|
|
|
|
string output_normal = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
|
|
|
|
cv::Mat img_jpg_normal = cv::imread(output_normal);
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_optimized, img_jpg_normal, NORM_INF));
|
|
|
|
|
2017-08-16 18:53:12 +08:00
|
|
|
EXPECT_EQ(0, remove(output_optimized.c_str()));
|
|
|
|
EXPECT_EQ(0, remove(output_normal.c_str()));
|
2017-06-07 01:22:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_rst_jpeg)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(IMWRITE_JPEG_RST_INTERVAL);
|
|
|
|
params.push_back(1);
|
|
|
|
|
|
|
|
string output_rst = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_rst, img, params));
|
|
|
|
cv::Mat img_jpg_rst = cv::imread(output_rst);
|
|
|
|
|
|
|
|
string output_normal = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
|
|
|
|
cv::Mat img_jpg_normal = cv::imread(output_normal);
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_rst, img_jpg_normal, NORM_INF));
|
|
|
|
|
2017-08-16 18:53:12 +08:00
|
|
|
EXPECT_EQ(0, remove(output_rst.c_str()));
|
|
|
|
EXPECT_EQ(0, remove(output_normal.c_str()));
|
2017-06-07 01:22:30 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif // HAVE_JPEG
|