opencv/modules/imgcodecs/test/test_jpeg.cpp

181 lines
5.7 KiB
C++
Raw Normal View History

#include "test_precomp.hpp"
using namespace cv;
using namespace std;
using namespace std::tr1;
#ifdef HAVE_JPEG
/**
* Test for check whether reading exif orientation tag was processed successfully or not
* The test info is the set of 8 images named testExifRotate_{1 to 8}.jpg
* The test image is the square 10x10 points divided by four sub-squares:
* (R corresponds to Red, G to Green, B to Blue, W to white)
* --------- ---------
* | R | G | | G | R |
* |-------| - (tag 1) |-------| - (tag 2)
* | B | W | | W | B |
* --------- ---------
*
* --------- ---------
* | W | B | | B | W |
* |-------| - (tag 3) |-------| - (tag 4)
* | G | R | | R | G |
* --------- ---------
*
* --------- ---------
* | R | B | | G | W |
* |-------| - (tag 5) |-------| - (tag 6)
* | G | W | | R | B |
* --------- ---------
*
* --------- ---------
* | W | G | | B | R |
* |-------| - (tag 7) |-------| - (tag 8)
* | B | R | | W | G |
* --------- ---------
*
*
* Every image contains exif field with orientation tag (0x112)
* After reading each image the corresponding matrix must be read as
* ---------
* | R | G |
* |-------|
* | B | W |
* ---------
*
*/
typedef testing::TestWithParam<string> Imgcodecs_Jpeg_Exif;
TEST_P(Imgcodecs_Jpeg_Exif, exif_orientation)
{
const string root = cvtest::TS::ptr()->get_data_path();
const string filename = root + GetParam();
const int colorThresholdHigh = 250;
const int colorThresholdLow = 5;
Mat m_img = imread(filename);
ASSERT_FALSE(m_img.empty());
Vec3b vec;
//Checking the first quadrant (with supposed red)
vec = m_img.at<Vec3b>(2, 2); //some point inside the square
EXPECT_LE(vec.val[0], colorThresholdLow);
EXPECT_LE(vec.val[1], colorThresholdLow);
EXPECT_GE(vec.val[2], colorThresholdHigh);
//Checking the second quadrant (with supposed green)
vec = m_img.at<Vec3b>(2, 7); //some point inside the square
EXPECT_LE(vec.val[0], colorThresholdLow);
EXPECT_GE(vec.val[1], colorThresholdHigh);
EXPECT_LE(vec.val[2], colorThresholdLow);
//Checking the third quadrant (with supposed blue)
vec = m_img.at<Vec3b>(7, 2); //some point inside the square
EXPECT_GE(vec.val[0], colorThresholdHigh);
EXPECT_LE(vec.val[1], colorThresholdLow);
EXPECT_LE(vec.val[2], colorThresholdLow);
}
const string exif_files[] =
{
"readwrite/testExifOrientation_1.jpg",
"readwrite/testExifOrientation_2.jpg",
"readwrite/testExifOrientation_3.jpg",
"readwrite/testExifOrientation_4.jpg",
"readwrite/testExifOrientation_5.jpg",
"readwrite/testExifOrientation_6.jpg",
"readwrite/testExifOrientation_7.jpg",
"readwrite/testExifOrientation_8.jpg"
};
INSTANTIATE_TEST_CASE_P(ExifFiles, Imgcodecs_Jpeg_Exif,
testing::ValuesIn(exif_files));
//==================================================================================================
TEST(Imgcodecs_Jpeg, encode_empty)
{
cv::Mat img;
std::vector<uchar> jpegImg;
ASSERT_THROW(cv::imencode(".jpg", img, jpegImg), cv::Exception);
}
TEST(Imgcodecs_Jpeg, encode_decode_progressive_jpeg)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<int> params;
params.push_back(IMWRITE_JPEG_PROGRESSIVE);
params.push_back(1);
string output_progressive = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_progressive, img, params));
cv::Mat img_jpg_progressive = cv::imread(output_progressive);
string output_normal = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
cv::Mat img_jpg_normal = cv::imread(output_normal);
EXPECT_EQ(0, cvtest::norm(img_jpg_progressive, img_jpg_normal, NORM_INF));
EXPECT_EQ(0, remove(output_progressive.c_str()));
EXPECT_EQ(0, remove(output_normal.c_str()));
}
TEST(Imgcodecs_Jpeg, encode_decode_optimize_jpeg)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<int> params;
params.push_back(IMWRITE_JPEG_OPTIMIZE);
params.push_back(1);
string output_optimized = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_optimized, img, params));
cv::Mat img_jpg_optimized = cv::imread(output_optimized);
string output_normal = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
cv::Mat img_jpg_normal = cv::imread(output_normal);
EXPECT_EQ(0, cvtest::norm(img_jpg_optimized, img_jpg_normal, NORM_INF));
EXPECT_EQ(0, remove(output_optimized.c_str()));
EXPECT_EQ(0, remove(output_normal.c_str()));
}
TEST(Imgcodecs_Jpeg, encode_decode_rst_jpeg)
{
cvtest::TS& ts = *cvtest::TS::ptr();
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
cv::Mat img = cv::imread(input);
ASSERT_FALSE(img.empty());
std::vector<int> params;
params.push_back(IMWRITE_JPEG_RST_INTERVAL);
params.push_back(1);
string output_rst = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_rst, img, params));
cv::Mat img_jpg_rst = cv::imread(output_rst);
string output_normal = cv::tempfile(".jpg");
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
cv::Mat img_jpg_normal = cv::imread(output_normal);
EXPECT_EQ(0, cvtest::norm(img_jpg_rst, img_jpg_normal, NORM_INF));
EXPECT_EQ(0, remove(output_rst.c_str()));
EXPECT_EQ(0, remove(output_normal.c_str()));
}
#endif // HAVE_JPEG