mirror of
https://github.com/opencv/opencv.git
synced 2024-12-19 03:58:31 +08:00
171 lines
4.1 KiB
C
171 lines
4.1 KiB
C
|
#include "clapack.h"
|
||
|
|
||
|
/* Subroutine */ int slarrc_(char *jobt, integer *n, real *vl, real *vu, real
|
||
|
*d__, real *e, real *pivmin, integer *eigcnt, integer *lcnt, integer *
|
||
|
rcnt, integer *info)
|
||
|
{
|
||
|
/* System generated locals */
|
||
|
integer i__1;
|
||
|
real r__1;
|
||
|
|
||
|
/* Local variables */
|
||
|
integer i__;
|
||
|
real sl, su, tmp, tmp2;
|
||
|
logical matt;
|
||
|
extern logical lsame_(char *, char *);
|
||
|
real lpivot, rpivot;
|
||
|
|
||
|
|
||
|
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
/* .. Array Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* Find the number of eigenvalues of the symmetric tridiagonal matrix T */
|
||
|
/* that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T */
|
||
|
/* if JOBT = 'L'. */
|
||
|
|
||
|
/* Arguments */
|
||
|
/* ========= */
|
||
|
|
||
|
/* JOBT (input) CHARACTER*1 */
|
||
|
/* = 'T': Compute Sturm count for matrix T. */
|
||
|
/* = 'L': Compute Sturm count for matrix L D L^T. */
|
||
|
|
||
|
/* N (input) INTEGER */
|
||
|
/* The order of the matrix. N > 0. */
|
||
|
|
||
|
/* VL (input) DOUBLE PRECISION */
|
||
|
/* VU (input) DOUBLE PRECISION */
|
||
|
/* The lower and upper bounds for the eigenvalues. */
|
||
|
|
||
|
/* D (input) DOUBLE PRECISION array, dimension (N) */
|
||
|
/* JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. */
|
||
|
/* JOBT = 'L': The N diagonal elements of the diagonal matrix D. */
|
||
|
|
||
|
/* E (input) DOUBLE PRECISION array, dimension (N) */
|
||
|
/* JOBT = 'T': The N-1 offdiagonal elements of the matrix T. */
|
||
|
/* JOBT = 'L': The N-1 offdiagonal elements of the matrix L. */
|
||
|
|
||
|
/* PIVMIN (input) DOUBLE PRECISION */
|
||
|
/* The minimum pivot in the Sturm sequence for T. */
|
||
|
|
||
|
/* EIGCNT (output) INTEGER */
|
||
|
/* The number of eigenvalues of the symmetric tridiagonal matrix T */
|
||
|
/* that are in the interval (VL,VU] */
|
||
|
|
||
|
/* LCNT (output) INTEGER */
|
||
|
/* RCNT (output) INTEGER */
|
||
|
/* The left and right negcounts of the interval. */
|
||
|
|
||
|
/* INFO (output) INTEGER */
|
||
|
|
||
|
/* Further Details */
|
||
|
/* =============== */
|
||
|
|
||
|
/* Based on contributions by */
|
||
|
/* Beresford Parlett, University of California, Berkeley, USA */
|
||
|
/* Jim Demmel, University of California, Berkeley, USA */
|
||
|
/* Inderjit Dhillon, University of Texas, Austin, USA */
|
||
|
/* Osni Marques, LBNL/NERSC, USA */
|
||
|
/* Christof Voemel, University of California, Berkeley, USA */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. External Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
/* Parameter adjustments */
|
||
|
--e;
|
||
|
--d__;
|
||
|
|
||
|
/* Function Body */
|
||
|
*info = 0;
|
||
|
*lcnt = 0;
|
||
|
*rcnt = 0;
|
||
|
*eigcnt = 0;
|
||
|
matt = lsame_(jobt, "T");
|
||
|
if (matt) {
|
||
|
/* Sturm sequence count on T */
|
||
|
lpivot = d__[1] - *vl;
|
||
|
rpivot = d__[1] - *vu;
|
||
|
if (lpivot <= 0.f) {
|
||
|
++(*lcnt);
|
||
|
}
|
||
|
if (rpivot <= 0.f) {
|
||
|
++(*rcnt);
|
||
|
}
|
||
|
i__1 = *n - 1;
|
||
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
||
|
/* Computing 2nd power */
|
||
|
r__1 = e[i__];
|
||
|
tmp = r__1 * r__1;
|
||
|
lpivot = d__[i__ + 1] - *vl - tmp / lpivot;
|
||
|
rpivot = d__[i__ + 1] - *vu - tmp / rpivot;
|
||
|
if (lpivot <= 0.f) {
|
||
|
++(*lcnt);
|
||
|
}
|
||
|
if (rpivot <= 0.f) {
|
||
|
++(*rcnt);
|
||
|
}
|
||
|
/* L10: */
|
||
|
}
|
||
|
} else {
|
||
|
/* Sturm sequence count on L D L^T */
|
||
|
sl = -(*vl);
|
||
|
su = -(*vu);
|
||
|
i__1 = *n - 1;
|
||
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
||
|
lpivot = d__[i__] + sl;
|
||
|
rpivot = d__[i__] + su;
|
||
|
if (lpivot <= 0.f) {
|
||
|
++(*lcnt);
|
||
|
}
|
||
|
if (rpivot <= 0.f) {
|
||
|
++(*rcnt);
|
||
|
}
|
||
|
tmp = e[i__] * d__[i__] * e[i__];
|
||
|
|
||
|
tmp2 = tmp / lpivot;
|
||
|
if (tmp2 == 0.f) {
|
||
|
sl = tmp - *vl;
|
||
|
} else {
|
||
|
sl = sl * tmp2 - *vl;
|
||
|
}
|
||
|
|
||
|
tmp2 = tmp / rpivot;
|
||
|
if (tmp2 == 0.f) {
|
||
|
su = tmp - *vu;
|
||
|
} else {
|
||
|
su = su * tmp2 - *vu;
|
||
|
}
|
||
|
/* L20: */
|
||
|
}
|
||
|
lpivot = d__[*n] + sl;
|
||
|
rpivot = d__[*n] + su;
|
||
|
if (lpivot <= 0.f) {
|
||
|
++(*lcnt);
|
||
|
}
|
||
|
if (rpivot <= 0.f) {
|
||
|
++(*rcnt);
|
||
|
}
|
||
|
}
|
||
|
*eigcnt = *rcnt - *lcnt;
|
||
|
return 0;
|
||
|
|
||
|
/* end of SLARRC */
|
||
|
|
||
|
} /* slarrc_ */
|