2018-02-06 20:54:14 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html
|
|
|
|
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "opencl_kernels_core.hpp"
|
|
|
|
#include "stat.hpp"
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
template <typename T, typename ST>
|
|
|
|
struct Sum_SIMD
|
|
|
|
{
|
|
|
|
int operator () (const T *, const uchar *, ST *, int, int) const
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
#if CV_SIMD
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
template <>
|
2018-09-04 21:37:39 +08:00
|
|
|
struct Sum_SIMD<uchar, int>
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
int operator () (const uchar * src0, const uchar * mask, int * dst, int len, int cn) const
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
if (mask || (cn != 1 && cn != 2 && cn != 4))
|
2018-02-06 20:54:14 +08:00
|
|
|
return 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
len *= cn;
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
int x = 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
v_uint32 v_sum = vx_setzero_u32();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
int len0 = len & -v_uint8::nlanes;
|
|
|
|
while (x < len0)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
const int len_tmp = min(x + 256*v_uint16::nlanes, len0);
|
|
|
|
v_uint16 v_sum16 = vx_setzero_u16();
|
|
|
|
for (; x < len_tmp; x += v_uint8::nlanes)
|
|
|
|
{
|
|
|
|
v_uint16 v_src0, v_src1;
|
|
|
|
v_expand(vx_load(src0 + x), v_src0, v_src1);
|
|
|
|
v_sum16 += v_src0 + v_src1;
|
|
|
|
}
|
|
|
|
v_uint32 v_half0, v_half1;
|
|
|
|
v_expand(v_sum16, v_half0, v_half1);
|
|
|
|
v_sum += v_half0 + v_half1;
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
2018-09-04 21:37:39 +08:00
|
|
|
if (x <= len - v_uint16::nlanes)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
v_uint32 v_half0, v_half1;
|
|
|
|
v_expand(vx_load_expand(src0 + x), v_half0, v_half1);
|
|
|
|
v_sum += v_half0 + v_half1;
|
|
|
|
x += v_uint16::nlanes;
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
2018-09-04 21:37:39 +08:00
|
|
|
if (x <= len - v_uint32::nlanes)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
v_sum += vx_load_expand_q(src0 + x);
|
|
|
|
x += v_uint32::nlanes;
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
if (cn == 1)
|
|
|
|
*dst += v_reduce_sum(v_sum);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
uint32_t CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_uint32::nlanes];
|
|
|
|
v_store_aligned(ar, v_sum);
|
|
|
|
for (int i = 0; i < v_uint32::nlanes; ++i)
|
|
|
|
dst[i % cn] += ar[i];
|
|
|
|
}
|
|
|
|
v_cleanup();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
return x / cn;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
2018-09-04 21:37:39 +08:00
|
|
|
struct Sum_SIMD<schar, int>
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
int operator () (const schar * src0, const uchar * mask, int * dst, int len, int cn) const
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
if (mask || (cn != 1 && cn != 2 && cn != 4))
|
2018-02-06 20:54:14 +08:00
|
|
|
return 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
len *= cn;
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
int x = 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
v_int32 v_sum = vx_setzero_s32();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
int len0 = len & -v_int8::nlanes;
|
|
|
|
while (x < len0)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
const int len_tmp = min(x + 256*v_int16::nlanes, len0);
|
|
|
|
v_int16 v_sum16 = vx_setzero_s16();
|
|
|
|
for (; x < len_tmp; x += v_int8::nlanes)
|
|
|
|
{
|
|
|
|
v_int16 v_src0, v_src1;
|
|
|
|
v_expand(vx_load(src0 + x), v_src0, v_src1);
|
|
|
|
v_sum16 += v_src0 + v_src1;
|
|
|
|
}
|
|
|
|
v_int32 v_half0, v_half1;
|
|
|
|
v_expand(v_sum16, v_half0, v_half1);
|
|
|
|
v_sum += v_half0 + v_half1;
|
|
|
|
}
|
|
|
|
if (x <= len - v_int16::nlanes)
|
|
|
|
{
|
|
|
|
v_int32 v_half0, v_half1;
|
|
|
|
v_expand(vx_load_expand(src0 + x), v_half0, v_half1);
|
|
|
|
v_sum += v_half0 + v_half1;
|
|
|
|
x += v_int16::nlanes;
|
|
|
|
}
|
|
|
|
if (x <= len - v_int32::nlanes)
|
|
|
|
{
|
|
|
|
v_sum += vx_load_expand_q(src0 + x);
|
|
|
|
x += v_int32::nlanes;
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
if (cn == 1)
|
|
|
|
*dst += v_reduce_sum(v_sum);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int32_t CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_int32::nlanes];
|
|
|
|
v_store_aligned(ar, v_sum);
|
|
|
|
for (int i = 0; i < v_int32::nlanes; ++i)
|
|
|
|
dst[i % cn] += ar[i];
|
|
|
|
}
|
|
|
|
v_cleanup();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
return x / cn;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
2018-09-04 21:37:39 +08:00
|
|
|
struct Sum_SIMD<ushort, int>
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
int operator () (const ushort * src0, const uchar * mask, int * dst, int len, int cn) const
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
|
|
|
if (mask || (cn != 1 && cn != 2 && cn != 4))
|
|
|
|
return 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
len *= cn;
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
int x = 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
v_uint32 v_sum = vx_setzero_u32();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
for (; x <= len - v_uint16::nlanes; x += v_uint16::nlanes)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
v_uint32 v_src0, v_src1;
|
|
|
|
v_expand(vx_load(src0 + x), v_src0, v_src1);
|
|
|
|
v_sum += v_src0 + v_src1;
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
2018-09-04 21:37:39 +08:00
|
|
|
if (x <= len - v_uint32::nlanes)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
v_sum += vx_load_expand(src0 + x);
|
|
|
|
x += v_uint32::nlanes;
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
if (cn == 1)
|
|
|
|
*dst += v_reduce_sum(v_sum);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
uint32_t CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_uint32::nlanes];
|
|
|
|
v_store_aligned(ar, v_sum);
|
|
|
|
for (int i = 0; i < v_uint32::nlanes; ++i)
|
|
|
|
dst[i % cn] += ar[i];
|
|
|
|
}
|
|
|
|
v_cleanup();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
return x / cn;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
2018-09-04 21:37:39 +08:00
|
|
|
struct Sum_SIMD<short, int>
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
int operator () (const short * src0, const uchar * mask, int * dst, int len, int cn) const
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
|
|
|
if (mask || (cn != 1 && cn != 2 && cn != 4))
|
|
|
|
return 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
len *= cn;
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
int x = 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
v_int32 v_sum = vx_setzero_s32();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
for (; x <= len - v_int16::nlanes; x += v_int16::nlanes)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
v_int32 v_src0, v_src1;
|
|
|
|
v_expand(vx_load(src0 + x), v_src0, v_src1);
|
|
|
|
v_sum += v_src0 + v_src1;
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
2018-09-04 21:37:39 +08:00
|
|
|
if (x <= len - v_int32::nlanes)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
v_sum += vx_load_expand(src0 + x);
|
|
|
|
x += v_int32::nlanes;
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
if (cn == 1)
|
|
|
|
*dst += v_reduce_sum(v_sum);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int32_t CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_int32::nlanes];
|
|
|
|
v_store_aligned(ar, v_sum);
|
|
|
|
for (int i = 0; i < v_int32::nlanes; ++i)
|
|
|
|
dst[i % cn] += ar[i];
|
|
|
|
}
|
|
|
|
v_cleanup();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
return x / cn;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
#if CV_SIMD_64F
|
2018-02-06 20:54:14 +08:00
|
|
|
template <>
|
2018-09-04 21:37:39 +08:00
|
|
|
struct Sum_SIMD<int, double>
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
int operator () (const int * src0, const uchar * mask, double * dst, int len, int cn) const
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
|
|
|
if (mask || (cn != 1 && cn != 2 && cn != 4))
|
|
|
|
return 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
len *= cn;
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
int x = 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
v_float64 v_sum0 = vx_setzero_f64();
|
|
|
|
v_float64 v_sum1 = vx_setzero_f64();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
for (; x <= len - 2 * v_int32::nlanes; x += 2 * v_int32::nlanes)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
v_int32 v_src0 = vx_load(src0 + x);
|
|
|
|
v_int32 v_src1 = vx_load(src0 + x + v_int32::nlanes);
|
|
|
|
v_sum0 += v_cvt_f64(v_src0) + v_cvt_f64(v_src1);
|
|
|
|
v_sum1 += v_cvt_f64_high(v_src0) + v_cvt_f64_high(v_src1);
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
#if CV_SIMD256 || CV_SIMD512
|
|
|
|
double CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_float64::nlanes];
|
|
|
|
v_store_aligned(ar, v_sum0 + v_sum1);
|
|
|
|
for (int i = 0; i < v_float64::nlanes; ++i)
|
|
|
|
dst[i % cn] += ar[i];
|
|
|
|
#else
|
|
|
|
double CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[2 * v_float64::nlanes];
|
|
|
|
v_store_aligned(ar, v_sum0);
|
|
|
|
v_store_aligned(ar + v_float64::nlanes, v_sum1);
|
|
|
|
for (int i = 0; i < 2 * v_float64::nlanes; ++i)
|
|
|
|
dst[i % cn] += ar[i];
|
|
|
|
#endif
|
|
|
|
v_cleanup();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
return x / cn;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
2018-09-04 21:37:39 +08:00
|
|
|
struct Sum_SIMD<float, double>
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
int operator () (const float * src0, const uchar * mask, double * dst, int len, int cn) const
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
|
|
|
if (mask || (cn != 1 && cn != 2 && cn != 4))
|
|
|
|
return 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
len *= cn;
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
int x = 0;
|
2018-09-04 21:37:39 +08:00
|
|
|
v_float64 v_sum0 = vx_setzero_f64();
|
|
|
|
v_float64 v_sum1 = vx_setzero_f64();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
for (; x <= len - 2 * v_float32::nlanes; x += 2 * v_float32::nlanes)
|
2018-02-06 20:54:14 +08:00
|
|
|
{
|
2018-09-04 21:37:39 +08:00
|
|
|
v_float32 v_src0 = vx_load(src0 + x);
|
|
|
|
v_float32 v_src1 = vx_load(src0 + x + v_float32::nlanes);
|
|
|
|
v_sum0 += v_cvt_f64(v_src0) + v_cvt_f64(v_src1);
|
|
|
|
v_sum1 += v_cvt_f64_high(v_src0) + v_cvt_f64_high(v_src1);
|
2018-02-06 20:54:14 +08:00
|
|
|
}
|
|
|
|
|
2018-09-04 21:37:39 +08:00
|
|
|
#if CV_SIMD256 || CV_SIMD512
|
|
|
|
double CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[v_float64::nlanes];
|
|
|
|
v_store_aligned(ar, v_sum0 + v_sum1);
|
|
|
|
for (int i = 0; i < v_float64::nlanes; ++i)
|
|
|
|
dst[i % cn] += ar[i];
|
|
|
|
#else
|
|
|
|
double CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[2 * v_float64::nlanes];
|
|
|
|
v_store_aligned(ar, v_sum0);
|
|
|
|
v_store_aligned(ar + v_float64::nlanes, v_sum1);
|
|
|
|
for (int i = 0; i < 2 * v_float64::nlanes; ++i)
|
|
|
|
dst[i % cn] += ar[i];
|
|
|
|
#endif
|
|
|
|
v_cleanup();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
return x / cn;
|
|
|
|
}
|
|
|
|
};
|
2018-09-04 21:37:39 +08:00
|
|
|
#endif
|
2018-02-06 20:54:14 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
template<typename T, typename ST>
|
|
|
|
static int sum_(const T* src0, const uchar* mask, ST* dst, int len, int cn )
|
|
|
|
{
|
|
|
|
const T* src = src0;
|
|
|
|
if( !mask )
|
|
|
|
{
|
|
|
|
Sum_SIMD<T, ST> vop;
|
|
|
|
int i = vop(src0, mask, dst, len, cn), k = cn % 4;
|
|
|
|
src += i * cn;
|
|
|
|
|
|
|
|
if( k == 1 )
|
|
|
|
{
|
|
|
|
ST s0 = dst[0];
|
|
|
|
|
|
|
|
#if CV_ENABLE_UNROLLED
|
|
|
|
for(; i <= len - 4; i += 4, src += cn*4 )
|
|
|
|
s0 += src[0] + src[cn] + src[cn*2] + src[cn*3];
|
|
|
|
#endif
|
|
|
|
for( ; i < len; i++, src += cn )
|
|
|
|
s0 += src[0];
|
|
|
|
dst[0] = s0;
|
|
|
|
}
|
|
|
|
else if( k == 2 )
|
|
|
|
{
|
|
|
|
ST s0 = dst[0], s1 = dst[1];
|
|
|
|
for( ; i < len; i++, src += cn )
|
|
|
|
{
|
|
|
|
s0 += src[0];
|
|
|
|
s1 += src[1];
|
|
|
|
}
|
|
|
|
dst[0] = s0;
|
|
|
|
dst[1] = s1;
|
|
|
|
}
|
|
|
|
else if( k == 3 )
|
|
|
|
{
|
|
|
|
ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
|
|
|
|
for( ; i < len; i++, src += cn )
|
|
|
|
{
|
|
|
|
s0 += src[0];
|
|
|
|
s1 += src[1];
|
|
|
|
s2 += src[2];
|
|
|
|
}
|
|
|
|
dst[0] = s0;
|
|
|
|
dst[1] = s1;
|
|
|
|
dst[2] = s2;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ; k < cn; k += 4 )
|
|
|
|
{
|
|
|
|
src = src0 + i*cn + k;
|
|
|
|
ST s0 = dst[k], s1 = dst[k+1], s2 = dst[k+2], s3 = dst[k+3];
|
|
|
|
for( ; i < len; i++, src += cn )
|
|
|
|
{
|
|
|
|
s0 += src[0]; s1 += src[1];
|
|
|
|
s2 += src[2]; s3 += src[3];
|
|
|
|
}
|
|
|
|
dst[k] = s0;
|
|
|
|
dst[k+1] = s1;
|
|
|
|
dst[k+2] = s2;
|
|
|
|
dst[k+3] = s3;
|
|
|
|
}
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
int i, nzm = 0;
|
|
|
|
if( cn == 1 )
|
|
|
|
{
|
|
|
|
ST s = dst[0];
|
|
|
|
for( i = 0; i < len; i++ )
|
|
|
|
if( mask[i] )
|
|
|
|
{
|
|
|
|
s += src[i];
|
|
|
|
nzm++;
|
|
|
|
}
|
|
|
|
dst[0] = s;
|
|
|
|
}
|
|
|
|
else if( cn == 3 )
|
|
|
|
{
|
|
|
|
ST s0 = dst[0], s1 = dst[1], s2 = dst[2];
|
|
|
|
for( i = 0; i < len; i++, src += 3 )
|
|
|
|
if( mask[i] )
|
|
|
|
{
|
|
|
|
s0 += src[0];
|
|
|
|
s1 += src[1];
|
|
|
|
s2 += src[2];
|
|
|
|
nzm++;
|
|
|
|
}
|
|
|
|
dst[0] = s0;
|
|
|
|
dst[1] = s1;
|
|
|
|
dst[2] = s2;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( i = 0; i < len; i++, src += cn )
|
|
|
|
if( mask[i] )
|
|
|
|
{
|
|
|
|
int k = 0;
|
|
|
|
#if CV_ENABLE_UNROLLED
|
|
|
|
for( ; k <= cn - 4; k += 4 )
|
|
|
|
{
|
|
|
|
ST s0, s1;
|
|
|
|
s0 = dst[k] + src[k];
|
|
|
|
s1 = dst[k+1] + src[k+1];
|
|
|
|
dst[k] = s0; dst[k+1] = s1;
|
|
|
|
s0 = dst[k+2] + src[k+2];
|
|
|
|
s1 = dst[k+3] + src[k+3];
|
|
|
|
dst[k+2] = s0; dst[k+3] = s1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
for( ; k < cn; k++ )
|
|
|
|
dst[k] += src[k];
|
|
|
|
nzm++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nzm;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int sum8u( const uchar* src, const uchar* mask, int* dst, int len, int cn )
|
|
|
|
{ return sum_(src, mask, dst, len, cn); }
|
|
|
|
|
|
|
|
static int sum8s( const schar* src, const uchar* mask, int* dst, int len, int cn )
|
|
|
|
{ return sum_(src, mask, dst, len, cn); }
|
|
|
|
|
|
|
|
static int sum16u( const ushort* src, const uchar* mask, int* dst, int len, int cn )
|
|
|
|
{ return sum_(src, mask, dst, len, cn); }
|
|
|
|
|
|
|
|
static int sum16s( const short* src, const uchar* mask, int* dst, int len, int cn )
|
|
|
|
{ return sum_(src, mask, dst, len, cn); }
|
|
|
|
|
|
|
|
static int sum32s( const int* src, const uchar* mask, double* dst, int len, int cn )
|
|
|
|
{ return sum_(src, mask, dst, len, cn); }
|
|
|
|
|
|
|
|
static int sum32f( const float* src, const uchar* mask, double* dst, int len, int cn )
|
|
|
|
{ return sum_(src, mask, dst, len, cn); }
|
|
|
|
|
|
|
|
static int sum64f( const double* src, const uchar* mask, double* dst, int len, int cn )
|
|
|
|
{ return sum_(src, mask, dst, len, cn); }
|
|
|
|
|
|
|
|
SumFunc getSumFunc(int depth)
|
|
|
|
{
|
|
|
|
static SumFunc sumTab[] =
|
|
|
|
{
|
|
|
|
(SumFunc)GET_OPTIMIZED(sum8u), (SumFunc)sum8s,
|
|
|
|
(SumFunc)sum16u, (SumFunc)sum16s,
|
|
|
|
(SumFunc)sum32s,
|
|
|
|
(SumFunc)GET_OPTIMIZED(sum32f), (SumFunc)sum64f,
|
|
|
|
0
|
|
|
|
};
|
|
|
|
|
|
|
|
return sumTab[depth];
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
|
|
|
|
bool ocl_sum( InputArray _src, Scalar & res, int sum_op, InputArray _mask,
|
|
|
|
InputArray _src2, bool calc2, const Scalar & res2 )
|
|
|
|
{
|
|
|
|
CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR);
|
|
|
|
|
|
|
|
const ocl::Device & dev = ocl::Device::getDefault();
|
|
|
|
bool doubleSupport = dev.doubleFPConfig() > 0,
|
|
|
|
haveMask = _mask.kind() != _InputArray::NONE,
|
|
|
|
haveSrc2 = _src2.kind() != _InputArray::NONE;
|
|
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
|
|
|
|
kercn = cn == 1 && !haveMask ? ocl::predictOptimalVectorWidth(_src, _src2) : 1,
|
|
|
|
mcn = std::max(cn, kercn);
|
|
|
|
CV_Assert(!haveSrc2 || _src2.type() == type);
|
|
|
|
int convert_cn = haveSrc2 ? mcn : cn;
|
|
|
|
|
|
|
|
if ( (!doubleSupport && depth == CV_64F) || cn > 4 )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int ngroups = dev.maxComputeUnits(), dbsize = ngroups * (calc2 ? 2 : 1);
|
|
|
|
size_t wgs = dev.maxWorkGroupSize();
|
|
|
|
|
|
|
|
int ddepth = std::max(sum_op == OCL_OP_SUM_SQR ? CV_32F : CV_32S, depth),
|
|
|
|
dtype = CV_MAKE_TYPE(ddepth, cn);
|
|
|
|
CV_Assert(!haveMask || _mask.type() == CV_8UC1);
|
|
|
|
|
|
|
|
int wgs2_aligned = 1;
|
|
|
|
while (wgs2_aligned < (int)wgs)
|
|
|
|
wgs2_aligned <<= 1;
|
|
|
|
wgs2_aligned >>= 1;
|
|
|
|
|
|
|
|
static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" };
|
|
|
|
char cvt[2][40];
|
|
|
|
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstTK=%s -D dstT1=%s -D ddepth=%d -D cn=%d"
|
|
|
|
" -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s%s%s%s -D kercn=%d%s%s%s -D convertFromU=%s",
|
|
|
|
ocl::typeToStr(CV_MAKE_TYPE(depth, mcn)), ocl::typeToStr(depth),
|
|
|
|
ocl::typeToStr(dtype), ocl::typeToStr(CV_MAKE_TYPE(ddepth, mcn)),
|
|
|
|
ocl::typeToStr(ddepth), ddepth, cn,
|
|
|
|
ocl::convertTypeStr(depth, ddepth, mcn, cvt[0]),
|
|
|
|
opMap[sum_op], (int)wgs, wgs2_aligned,
|
|
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
|
|
|
|
haveMask ? " -D HAVE_MASK" : "",
|
|
|
|
_src.isContinuous() ? " -D HAVE_SRC_CONT" : "",
|
|
|
|
haveMask && _mask.isContinuous() ? " -D HAVE_MASK_CONT" : "", kercn,
|
|
|
|
haveSrc2 ? " -D HAVE_SRC2" : "", calc2 ? " -D OP_CALC2" : "",
|
|
|
|
haveSrc2 && _src2.isContinuous() ? " -D HAVE_SRC2_CONT" : "",
|
|
|
|
depth <= CV_32S && ddepth == CV_32S ? ocl::convertTypeStr(CV_8U, ddepth, convert_cn, cvt[1]) : "noconvert");
|
|
|
|
|
|
|
|
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc, opts);
|
|
|
|
if (k.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
UMat src = _src.getUMat(), src2 = _src2.getUMat(),
|
|
|
|
db(1, dbsize, dtype), mask = _mask.getUMat();
|
|
|
|
|
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
|
|
|
dbarg = ocl::KernelArg::PtrWriteOnly(db),
|
|
|
|
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
|
|
|
|
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2);
|
|
|
|
|
|
|
|
if (haveMask)
|
|
|
|
{
|
|
|
|
if (haveSrc2)
|
|
|
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg, src2arg);
|
|
|
|
else
|
|
|
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, maskarg);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (haveSrc2)
|
|
|
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg, src2arg);
|
|
|
|
else
|
|
|
|
k.args(srcarg, src.cols, (int)src.total(), ngroups, dbarg);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t globalsize = ngroups * wgs;
|
|
|
|
if (k.run(1, &globalsize, &wgs, false))
|
|
|
|
{
|
|
|
|
typedef Scalar (*part_sum)(Mat m);
|
|
|
|
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> },
|
|
|
|
func = funcs[ddepth - CV_32S];
|
|
|
|
|
|
|
|
Mat mres = db.getMat(ACCESS_READ);
|
|
|
|
if (calc2)
|
|
|
|
const_cast<Scalar &>(res2) = func(mres.colRange(ngroups, dbsize));
|
|
|
|
|
|
|
|
res = func(mres.colRange(0, ngroups));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_IPP
|
|
|
|
static bool ipp_sum(Mat &src, Scalar &_res)
|
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION_IPP();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
#if IPP_VERSION_X100 >= 700
|
|
|
|
int cn = src.channels();
|
|
|
|
if (cn > 4)
|
|
|
|
return false;
|
|
|
|
size_t total_size = src.total();
|
|
|
|
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0;
|
|
|
|
if( src.dims == 2 || (src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) )
|
|
|
|
{
|
|
|
|
IppiSize sz = { cols, rows };
|
|
|
|
int type = src.type();
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiSumFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm);
|
|
|
|
typedef IppStatus (CV_STDCALL* ippiSumFuncNoHint)(const void*, int, IppiSize, double *);
|
|
|
|
ippiSumFuncHint ippiSumHint =
|
|
|
|
type == CV_32FC1 ? (ippiSumFuncHint)ippiSum_32f_C1R :
|
|
|
|
type == CV_32FC3 ? (ippiSumFuncHint)ippiSum_32f_C3R :
|
|
|
|
type == CV_32FC4 ? (ippiSumFuncHint)ippiSum_32f_C4R :
|
|
|
|
0;
|
|
|
|
ippiSumFuncNoHint ippiSum =
|
|
|
|
type == CV_8UC1 ? (ippiSumFuncNoHint)ippiSum_8u_C1R :
|
|
|
|
type == CV_8UC3 ? (ippiSumFuncNoHint)ippiSum_8u_C3R :
|
|
|
|
type == CV_8UC4 ? (ippiSumFuncNoHint)ippiSum_8u_C4R :
|
|
|
|
type == CV_16UC1 ? (ippiSumFuncNoHint)ippiSum_16u_C1R :
|
|
|
|
type == CV_16UC3 ? (ippiSumFuncNoHint)ippiSum_16u_C3R :
|
|
|
|
type == CV_16UC4 ? (ippiSumFuncNoHint)ippiSum_16u_C4R :
|
|
|
|
type == CV_16SC1 ? (ippiSumFuncNoHint)ippiSum_16s_C1R :
|
|
|
|
type == CV_16SC3 ? (ippiSumFuncNoHint)ippiSum_16s_C3R :
|
|
|
|
type == CV_16SC4 ? (ippiSumFuncNoHint)ippiSum_16s_C4R :
|
|
|
|
0;
|
|
|
|
CV_Assert(!ippiSumHint || !ippiSum);
|
|
|
|
if( ippiSumHint || ippiSum )
|
|
|
|
{
|
|
|
|
Ipp64f res[4];
|
|
|
|
IppStatus ret = ippiSumHint ?
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiSumHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) :
|
|
|
|
CV_INSTRUMENT_FUN_IPP(ippiSum, src.ptr(), (int)src.step[0], sz, res);
|
|
|
|
if( ret >= 0 )
|
|
|
|
{
|
|
|
|
for( int i = 0; i < cn; i++ )
|
|
|
|
_res[i] = res[i];
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
CV_UNUSED(src); CV_UNUSED(_res);
|
|
|
|
#endif
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
} // cv::
|
|
|
|
|
|
|
|
cv::Scalar cv::sum( InputArray _src )
|
|
|
|
{
|
2018-09-14 05:35:26 +08:00
|
|
|
CV_INSTRUMENT_REGION();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
#if defined HAVE_OPENCL || defined HAVE_IPP
|
|
|
|
Scalar _res;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
CV_OCL_RUN_(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2,
|
|
|
|
ocl_sum(_src, _res, OCL_OP_SUM),
|
|
|
|
_res)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_sum(src, _res), _res);
|
|
|
|
|
|
|
|
int k, cn = src.channels(), depth = src.depth();
|
|
|
|
SumFunc func = getSumFunc(depth);
|
|
|
|
CV_Assert( cn <= 4 && func != 0 );
|
|
|
|
|
|
|
|
const Mat* arrays[] = {&src, 0};
|
2018-09-04 21:44:47 +08:00
|
|
|
uchar* ptrs[1] = {};
|
2018-02-06 20:54:14 +08:00
|
|
|
NAryMatIterator it(arrays, ptrs);
|
|
|
|
Scalar s;
|
|
|
|
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
|
|
|
|
int j, count = 0;
|
|
|
|
AutoBuffer<int> _buf;
|
|
|
|
int* buf = (int*)&s[0];
|
|
|
|
size_t esz = 0;
|
|
|
|
bool blockSum = depth < CV_32S;
|
|
|
|
|
|
|
|
if( blockSum )
|
|
|
|
{
|
|
|
|
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
|
|
|
|
blockSize = std::min(blockSize, intSumBlockSize);
|
|
|
|
_buf.allocate(cn);
|
2018-06-11 06:42:00 +08:00
|
|
|
buf = _buf.data();
|
2018-02-06 20:54:14 +08:00
|
|
|
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
buf[k] = 0;
|
|
|
|
esz = src.elemSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
|
|
{
|
|
|
|
for( j = 0; j < total; j += blockSize )
|
|
|
|
{
|
|
|
|
int bsz = std::min(total - j, blockSize);
|
|
|
|
func( ptrs[0], 0, (uchar*)buf, bsz, cn );
|
|
|
|
count += bsz;
|
|
|
|
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
|
|
|
|
{
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
s[k] += buf[k];
|
|
|
|
buf[k] = 0;
|
|
|
|
}
|
|
|
|
count = 0;
|
|
|
|
}
|
|
|
|
ptrs[0] += bsz*esz;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return s;
|
|
|
|
}
|