mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 14:39:11 +08:00
1065 lines
36 KiB
C++
1065 lines
36 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <cmath>
|
||
|
#include <limits>
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
using namespace gpu;
|
||
|
|
||
|
#define CHECK(pred, err) if (!(pred)) { \
|
||
|
ts->printf(cvtest::TS::CONSOLE, "Fail: \"%s\" at line: %d\n", #pred, __LINE__); \
|
||
|
ts->set_failed_test_info(err); \
|
||
|
return; }
|
||
|
|
||
|
class CV_GpuArithmTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_GpuArithmTest(const char* test_name, const char* test_funcs){}
|
||
|
virtual ~CV_GpuArithmTest() {}
|
||
|
|
||
|
protected:
|
||
|
void run(int);
|
||
|
|
||
|
int test(int type);
|
||
|
|
||
|
virtual int test(const Mat& mat1, const Mat& mat2) = 0;
|
||
|
|
||
|
int CheckNorm(const Mat& m1, const Mat& m2, double eps = 1e-5);
|
||
|
int CheckNorm(const Scalar& s1, const Scalar& s2, double eps = 1e-5);
|
||
|
int CheckNorm(double d1, double d2, double eps = 1e-5);
|
||
|
};
|
||
|
|
||
|
int CV_GpuArithmTest::test(int type)
|
||
|
{
|
||
|
cv::Size sz(200, 200);
|
||
|
cv::Mat mat1(sz, type), mat2(sz, type);
|
||
|
|
||
|
cv::RNG& rng = ts->get_rng();
|
||
|
|
||
|
if (type != CV_32FC1)
|
||
|
{
|
||
|
rng.fill(mat1, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20));
|
||
|
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
rng.fill(mat1, cv::RNG::UNIFORM, cv::Scalar::all(0.1), cv::Scalar::all(1.0));
|
||
|
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(0.1), cv::Scalar::all(1.0));
|
||
|
}
|
||
|
|
||
|
return test(mat1, mat2);
|
||
|
}
|
||
|
|
||
|
int CV_GpuArithmTest::CheckNorm(const Mat& m1, const Mat& m2, double eps)
|
||
|
{
|
||
|
double ret = norm(m1, m2, NORM_INF);
|
||
|
|
||
|
if (ret < eps)
|
||
|
return cvtest::TS::OK;
|
||
|
|
||
|
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret);
|
||
|
return cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
|
||
|
int CV_GpuArithmTest::CheckNorm(const Scalar& s1, const Scalar& s2, double eps)
|
||
|
{
|
||
|
int ret0 = CheckNorm(s1[0], s2[0], eps),
|
||
|
ret1 = CheckNorm(s1[1], s2[1], eps),
|
||
|
ret2 = CheckNorm(s1[2], s2[2], eps),
|
||
|
ret3 = CheckNorm(s1[3], s2[3], eps);
|
||
|
|
||
|
return (ret0 == cvtest::TS::OK && ret1 == cvtest::TS::OK && ret2 == cvtest::TS::OK && ret3 == cvtest::TS::OK) ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
|
||
|
int CV_GpuArithmTest::CheckNorm(double d1, double d2, double eps)
|
||
|
{
|
||
|
double ret = ::fabs(d1 - d2);
|
||
|
|
||
|
if (ret < eps)
|
||
|
return cvtest::TS::OK;
|
||
|
|
||
|
ts->printf(cvtest::TS::LOG, "\nNorm: %f\n", ret);
|
||
|
return cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
|
||
|
void CV_GpuArithmTest::run( int )
|
||
|
{
|
||
|
int testResult = cvtest::TS::OK;
|
||
|
|
||
|
const int types[] = {CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1};
|
||
|
const char* type_names[] = {"CV_8UC1 ", "CV_8UC3 ", "CV_8UC4 ", "CV_32FC1"};
|
||
|
const int type_count = sizeof(types)/sizeof(types[0]);
|
||
|
|
||
|
//run tests
|
||
|
for (int t = 0; t < type_count; ++t)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "Start testing %s", type_names[t]);
|
||
|
|
||
|
if (cvtest::TS::OK == test(types[t]))
|
||
|
ts->printf(cvtest::TS::LOG, "SUCCESS\n");
|
||
|
else
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "FAIL\n");
|
||
|
testResult = cvtest::TS::FAIL_MISMATCH;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ts->set_failed_test_info(testResult);
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Add
|
||
|
|
||
|
struct CV_GpuNppImageAddTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageAddTest() : CV_GpuArithmTest( "GPU-NppImageAdd", "add" ) {}
|
||
|
|
||
|
virtual int test(const Mat& mat1, const Mat& mat2)
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::add(mat1, mat2, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::add(gpu1, gpu2, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Sub
|
||
|
struct CV_GpuNppImageSubtractTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageSubtractTest() : CV_GpuArithmTest( "GPU-NppImageSubtract", "subtract" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::subtract(mat1, mat2, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::subtract(gpu1, gpu2, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// multiply
|
||
|
struct CV_GpuNppImageMultiplyTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageMultiplyTest() : CV_GpuArithmTest( "GPU-NppImageMultiply", "multiply" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::multiply(mat1, mat2, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::multiply(gpu1, gpu2, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// divide
|
||
|
struct CV_GpuNppImageDivideTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageDivideTest() : CV_GpuArithmTest( "GPU-NppImageDivide", "divide" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::divide(mat1, mat2, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::divide(gpu1, gpu2, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes, 1.01f);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// transpose
|
||
|
struct CV_GpuNppImageTransposeTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageTransposeTest() : CV_GpuArithmTest( "GPU-NppImageTranspose", "transpose" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::transpose(mat1, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::transpose(gpu1, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// absdiff
|
||
|
struct CV_GpuNppImageAbsdiffTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageAbsdiffTest() : CV_GpuArithmTest( "GPU-NppImageAbsdiff", "absdiff" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4 && mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::absdiff(mat1, mat2, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::absdiff(gpu1, gpu2, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// compare
|
||
|
struct CV_GpuNppImageCompareTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageCompareTest() : CV_GpuArithmTest( "GPU-NppImageCompare", "compare" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
int cmp_codes[] = {CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE};
|
||
|
const char* cmp_str[] = {"CMP_EQ", "CMP_GT", "CMP_GE", "CMP_LT", "CMP_LE", "CMP_NE"};
|
||
|
int cmp_num = sizeof(cmp_codes) / sizeof(int);
|
||
|
|
||
|
int test_res = cvtest::TS::OK;
|
||
|
|
||
|
for (int i = 0; i < cmp_num; ++i)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\nCompare operation: %s\n", cmp_str[i]);
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::compare(mat1, mat2, cpuRes, cmp_codes[i]);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::compare(gpu1, gpu2, gpuRes, cmp_codes[i]);
|
||
|
|
||
|
if (CheckNorm(cpuRes, gpuRes) != cvtest::TS::OK)
|
||
|
test_res = cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
|
||
|
return test_res;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// meanStdDev
|
||
|
struct CV_GpuNppImageMeanStdDevTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageMeanStdDevTest() : CV_GpuArithmTest( "GPU-NppImageMeanStdDev", "meanStdDev" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
Scalar cpumean;
|
||
|
Scalar cpustddev;
|
||
|
cv::meanStdDev(mat1, cpumean, cpustddev);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
Scalar gpumean;
|
||
|
Scalar gpustddev;
|
||
|
cv::gpu::meanStdDev(gpu1, gpumean, gpustddev);
|
||
|
|
||
|
int test_res = cvtest::TS::OK;
|
||
|
|
||
|
if (CheckNorm(cpumean, gpumean) != cvtest::TS::OK)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\nMean FAILED\n");
|
||
|
test_res = cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
|
||
|
if (CheckNorm(cpustddev, gpustddev) != cvtest::TS::OK)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\nStdDev FAILED\n");
|
||
|
test_res = cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
|
||
|
return test_res;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// norm
|
||
|
struct CV_GpuNppImageNormTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageNormTest() : CV_GpuArithmTest( "GPU-NppImageNorm", "norm" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
int norms[] = {NORM_INF, NORM_L1, NORM_L2};
|
||
|
const char* norms_str[] = {"NORM_INF", "NORM_L1", "NORM_L2"};
|
||
|
int norms_num = sizeof(norms) / sizeof(int);
|
||
|
|
||
|
int test_res = cvtest::TS::OK;
|
||
|
|
||
|
for (int i = 0; i < norms_num; ++i)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\nNorm type: %s\n", norms_str[i]);
|
||
|
|
||
|
double cpu_norm = cv::norm(mat1, mat2, norms[i]);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
double gpu_norm = cv::gpu::norm(gpu1, gpu2, norms[i]);
|
||
|
|
||
|
if (CheckNorm(cpu_norm, gpu_norm) != cvtest::TS::OK)
|
||
|
test_res = cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
|
||
|
return test_res;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// flip
|
||
|
struct CV_GpuNppImageFlipTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageFlipTest() : CV_GpuArithmTest( "GPU-NppImageFlip", "flip" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC4)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
int flip_codes[] = {0, 1, -1};
|
||
|
const char* flip_axis[] = {"X", "Y", "Both"};
|
||
|
int flip_codes_num = sizeof(flip_codes) / sizeof(int);
|
||
|
|
||
|
int test_res = cvtest::TS::OK;
|
||
|
|
||
|
for (int i = 0; i < flip_codes_num; ++i)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\nFlip Axis: %s\n", flip_axis[i]);
|
||
|
|
||
|
Mat cpu_res;
|
||
|
cv::flip(mat1, cpu_res, flip_codes[i]);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu_res;
|
||
|
cv::gpu::flip(gpu1, gpu_res, flip_codes[i]);
|
||
|
|
||
|
if (CheckNorm(cpu_res, gpu_res) != cvtest::TS::OK)
|
||
|
test_res = cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
|
||
|
return test_res;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// LUT
|
||
|
struct CV_GpuNppImageLUTTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageLUTTest() : CV_GpuArithmTest( "GPU-NppImageLUT", "LUT" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& )
|
||
|
{
|
||
|
if (mat1.type() != CV_8UC1 && mat1.type() != CV_8UC3)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat lut(1, 256, CV_8UC1);
|
||
|
cv::RNG& rng = ts->get_rng();
|
||
|
rng.fill(lut, cv::RNG::UNIFORM, cv::Scalar::all(100), cv::Scalar::all(200));
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::LUT(mat1, lut, cpuRes);
|
||
|
|
||
|
cv::gpu::GpuMat gpuRes;
|
||
|
cv::gpu::LUT(GpuMat(mat1), lut, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// exp
|
||
|
struct CV_GpuNppImageExpTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageExpTest() : CV_GpuArithmTest( "GPU-NppImageExp", "exp" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& )
|
||
|
{
|
||
|
if (mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::exp(mat1, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::exp(gpu1, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// log
|
||
|
struct CV_GpuNppImageLogTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageLogTest() : CV_GpuArithmTest( "GPU-NppImageLog", "log" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& )
|
||
|
{
|
||
|
if (mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::log(mat1, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::log(gpu1, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// magnitude
|
||
|
struct CV_GpuNppImageMagnitudeTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageMagnitudeTest() : CV_GpuArithmTest( "GPU-NppImageMagnitude", "magnitude" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::magnitude(mat1, mat2, cpuRes);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::magnitude(gpu1, gpu2, gpuRes);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// phase
|
||
|
struct CV_GpuNppImagePhaseTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImagePhaseTest() : CV_GpuArithmTest( "GPU-NppImagePhase", "phase" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuRes;
|
||
|
cv::phase(mat1, mat2, cpuRes, true);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuRes;
|
||
|
cv::gpu::phase(gpu1, gpu2, gpuRes, true);
|
||
|
|
||
|
return CheckNorm(cpuRes, gpuRes, 0.3f);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// cartToPolar
|
||
|
struct CV_GpuNppImageCartToPolarTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImageCartToPolarTest() : CV_GpuArithmTest( "GPU-NppImageCartToPolar", "cartToPolar" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuMag, cpuAngle;
|
||
|
cv::cartToPolar(mat1, mat2, cpuMag, cpuAngle);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuMag, gpuAngle;
|
||
|
cv::gpu::cartToPolar(gpu1, gpu2, gpuMag, gpuAngle);
|
||
|
|
||
|
int magRes = CheckNorm(cpuMag, gpuMag);
|
||
|
int angleRes = CheckNorm(cpuAngle, gpuAngle, 0.005f);
|
||
|
|
||
|
return magRes == cvtest::TS::OK && angleRes == cvtest::TS::OK ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// polarToCart
|
||
|
struct CV_GpuNppImagePolarToCartTest : public CV_GpuArithmTest
|
||
|
{
|
||
|
CV_GpuNppImagePolarToCartTest() : CV_GpuArithmTest( "GPU-NppImagePolarToCart", "polarToCart" ) {}
|
||
|
|
||
|
int test( const Mat& mat1, const Mat& mat2 )
|
||
|
{
|
||
|
if (mat1.type() != CV_32FC1)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "\tUnsupported type\t");
|
||
|
return cvtest::TS::OK;
|
||
|
}
|
||
|
|
||
|
cv::Mat cpuX, cpuY;
|
||
|
cv::polarToCart(mat1, mat2, cpuX, cpuY);
|
||
|
|
||
|
GpuMat gpu1(mat1);
|
||
|
GpuMat gpu2(mat2);
|
||
|
GpuMat gpuX, gpuY;
|
||
|
cv::gpu::polarToCart(gpu1, gpu2, gpuX, gpuY);
|
||
|
|
||
|
int xRes = CheckNorm(cpuX, gpuX);
|
||
|
int yRes = CheckNorm(cpuY, gpuY);
|
||
|
|
||
|
return xRes == cvtest::TS::OK && yRes == cvtest::TS::OK ? cvtest::TS::OK : cvtest::TS::FAIL_GENERIC;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Min max
|
||
|
|
||
|
struct CV_GpuMinMaxTest: public cvtest::BaseTest
|
||
|
{
|
||
|
CV_GpuMinMaxTest() {}
|
||
|
|
||
|
cv::gpu::GpuMat buf;
|
||
|
|
||
|
void run(int)
|
||
|
{
|
||
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||
|
int depth_end = double_ok ? CV_64F : CV_32F;
|
||
|
|
||
|
for (int depth = CV_8U; depth <= depth_end; ++depth)
|
||
|
{
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
{
|
||
|
int rows = 1 + rand() % 1000;
|
||
|
int cols = 1 + rand() % 1000;
|
||
|
test(rows, cols, 1, depth);
|
||
|
test_masked(rows, cols, 1, depth);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test(int rows, int cols, int cn, int depth)
|
||
|
{
|
||
|
cv::Mat src(rows, cols, CV_MAKE_TYPE(depth, cn));
|
||
|
cv::RNG& rng = ts->get_rng();
|
||
|
rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||
|
|
||
|
double minVal, maxVal;
|
||
|
cv::Point minLoc, maxLoc;
|
||
|
|
||
|
if (depth != CV_8S)
|
||
|
{
|
||
|
cv::minMaxLoc(src, &minVal, &maxVal, &minLoc, &maxLoc);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
minVal = std::numeric_limits<double>::max();
|
||
|
maxVal = -std::numeric_limits<double>::max();
|
||
|
for (int i = 0; i < src.rows; ++i)
|
||
|
for (int j = 0; j < src.cols; ++j)
|
||
|
{
|
||
|
signed char val = src.at<signed char>(i, j);
|
||
|
if (val < minVal) minVal = val;
|
||
|
if (val > maxVal) maxVal = val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double minVal_, maxVal_;
|
||
|
cv::gpu::minMax(cv::gpu::GpuMat(src), &minVal_, &maxVal_, cv::gpu::GpuMat(), buf);
|
||
|
|
||
|
if (abs(minVal - minVal_) > 1e-3f)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "\nfail: minVal=%f minVal_=%f rows=%d cols=%d depth=%d cn=%d\n", minVal, minVal_, rows, cols, depth, cn);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
}
|
||
|
if (abs(maxVal - maxVal_) > 1e-3f)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "\nfail: maxVal=%f maxVal_=%f rows=%d cols=%d depth=%d cn=%d\n", maxVal, maxVal_, rows, cols, depth, cn);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test_masked(int rows, int cols, int cn, int depth)
|
||
|
{
|
||
|
cv::Mat src(rows, cols, CV_MAKE_TYPE(depth, cn));
|
||
|
cv::RNG& rng = ts->get_rng();
|
||
|
rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||
|
|
||
|
cv::Mat mask(src.size(), CV_8U);
|
||
|
rng.fill(mask, RNG::UNIFORM, Scalar(0), Scalar(2));
|
||
|
|
||
|
double minVal, maxVal;
|
||
|
cv::Point minLoc, maxLoc;
|
||
|
|
||
|
Mat src_ = src.reshape(1);
|
||
|
if (depth != CV_8S)
|
||
|
{
|
||
|
cv::minMaxLoc(src_, &minVal, &maxVal, &minLoc, &maxLoc, mask);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// OpenCV's minMaxLoc doesn't support CV_8S type
|
||
|
minVal = std::numeric_limits<double>::max();
|
||
|
maxVal = -std::numeric_limits<double>::max();
|
||
|
for (int i = 0; i < src_.rows; ++i)
|
||
|
for (int j = 0; j < src_.cols; ++j)
|
||
|
{
|
||
|
char val = src_.at<char>(i, j);
|
||
|
if (mask.at<unsigned char>(i, j)) { if (val < minVal) minVal = val; }
|
||
|
if (mask.at<unsigned char>(i, j)) { if (val > maxVal) maxVal = val; }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double minVal_, maxVal_;
|
||
|
cv::Point minLoc_, maxLoc_;
|
||
|
cv::gpu::minMax(cv::gpu::GpuMat(src), &minVal_, &maxVal_, cv::gpu::GpuMat(mask), buf);
|
||
|
|
||
|
if (abs(minVal - minVal_) > 1e-3f)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "\nfail: minVal=%f minVal_=%f rows=%d cols=%d depth=%d cn=%d\n", minVal, minVal_, rows, cols, depth, cn);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
}
|
||
|
if (abs(maxVal - maxVal_) > 1e-3f)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "\nfail: maxVal=%f maxVal_=%f rows=%d cols=%d depth=%d cn=%d\n", maxVal, maxVal_, rows, cols, depth, cn);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Min max loc
|
||
|
|
||
|
struct CV_GpuMinMaxLocTest: public cvtest::BaseTest
|
||
|
{
|
||
|
CV_GpuMinMaxLocTest() {}
|
||
|
|
||
|
GpuMat valbuf, locbuf;
|
||
|
|
||
|
void run(int)
|
||
|
{
|
||
|
bool double_ok = gpu::TargetArchs::builtWith(gpu::NATIVE_DOUBLE) &&
|
||
|
gpu::DeviceInfo().supports(gpu::NATIVE_DOUBLE);
|
||
|
int depth_end = double_ok ? CV_64F : CV_32F;
|
||
|
|
||
|
for (int depth = CV_8U; depth <= depth_end; ++depth)
|
||
|
{
|
||
|
int rows = 1, cols = 3;
|
||
|
test(rows, cols, depth);
|
||
|
for (int i = 0; i < 4; ++i)
|
||
|
{
|
||
|
int rows = 1 + rand() % 1000;
|
||
|
int cols = 1 + rand() % 1000;
|
||
|
test(rows, cols, depth);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test(int rows, int cols, int depth)
|
||
|
{
|
||
|
cv::Mat src(rows, cols, depth);
|
||
|
cv::RNG& rng = ts->get_rng();
|
||
|
rng.fill(src, RNG::UNIFORM, Scalar(0), Scalar(255));
|
||
|
|
||
|
cv::Mat mask(src.size(), CV_8U);
|
||
|
rng.fill(mask, RNG::UNIFORM, Scalar(0), Scalar(2));
|
||
|
|
||
|
// At least one of the mask elements must be non zero as OpenCV returns 0
|
||
|
// in such case, when our implementation returns maximum or minimum value
|
||
|
mask.at<unsigned char>(0, 0) = 1;
|
||
|
|
||
|
double minVal, maxVal;
|
||
|
cv::Point minLoc, maxLoc;
|
||
|
|
||
|
if (depth != CV_8S)
|
||
|
cv::minMaxLoc(src, &minVal, &maxVal, &minLoc, &maxLoc, mask);
|
||
|
else
|
||
|
{
|
||
|
// OpenCV's minMaxLoc doesn't support CV_8S type
|
||
|
minVal = std::numeric_limits<double>::max();
|
||
|
maxVal = -std::numeric_limits<double>::max();
|
||
|
for (int i = 0; i < src.rows; ++i)
|
||
|
for (int j = 0; j < src.cols; ++j)
|
||
|
{
|
||
|
char val = src.at<char>(i, j);
|
||
|
if (mask.at<unsigned char>(i, j))
|
||
|
{
|
||
|
if (val < minVal) { minVal = val; minLoc = cv::Point(j, i); }
|
||
|
if (val > maxVal) { maxVal = val; maxLoc = cv::Point(j, i); }
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double minVal_, maxVal_;
|
||
|
cv::Point minLoc_, maxLoc_;
|
||
|
cv::gpu::minMaxLoc(cv::gpu::GpuMat(src), &minVal_, &maxVal_, &minLoc_, &maxLoc_, cv::gpu::GpuMat(mask), valbuf, locbuf);
|
||
|
|
||
|
CHECK(minVal == minVal_, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
CHECK(maxVal == maxVal_, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
CHECK(0 == memcmp(src.ptr(minLoc.y) + minLoc.x * src.elemSize(), src.ptr(minLoc_.y) + minLoc_.x * src.elemSize(), src.elemSize()),
|
||
|
cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
CHECK(0 == memcmp(src.ptr(maxLoc.y) + maxLoc.x * src.elemSize(), src.ptr(maxLoc_.y) + maxLoc_.x * src.elemSize(), src.elemSize()),
|
||
|
cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////
|
||
|
// Count non zero
|
||
|
struct CV_GpuCountNonZeroTest: cvtest::BaseTest
|
||
|
{
|
||
|
CV_GpuCountNonZeroTest(){}
|
||
|
|
||
|
void run(int)
|
||
|
{
|
||
|
int depth_end;
|
||
|
if (cv::gpu::DeviceInfo().supports(cv::gpu::NATIVE_DOUBLE))
|
||
|
depth_end = CV_64F;
|
||
|
else
|
||
|
depth_end = CV_32F;
|
||
|
for (int depth = CV_8U; depth <= CV_32F; ++depth)
|
||
|
{
|
||
|
for (int i = 0; i < 4; ++i)
|
||
|
{
|
||
|
int rows = 1 + rand() % 1000;
|
||
|
int cols = 1 + rand() % 1000;
|
||
|
test(rows, cols, depth);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void test(int rows, int cols, int depth)
|
||
|
{
|
||
|
cv::Mat src(rows, cols, depth);
|
||
|
cv::RNG rng;
|
||
|
if (depth == 5)
|
||
|
rng.fill(src, RNG::UNIFORM, Scalar(-1000.f), Scalar(1000.f));
|
||
|
else if (depth == 6)
|
||
|
rng.fill(src, RNG::UNIFORM, Scalar(-1000.), Scalar(1000.));
|
||
|
else
|
||
|
for (int i = 0; i < src.rows; ++i)
|
||
|
{
|
||
|
Mat row(1, src.cols * src.elemSize(), CV_8U, src.ptr(i));
|
||
|
rng.fill(row, RNG::UNIFORM, Scalar(0), Scalar(256));
|
||
|
}
|
||
|
|
||
|
int n_gold = cv::countNonZero(src);
|
||
|
int n = cv::gpu::countNonZero(cv::gpu::GpuMat(src));
|
||
|
|
||
|
if (n != n_gold)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::LOG, "%d %d %d %d %d\n", n, n_gold, depth, cols, rows);
|
||
|
n_gold = cv::countNonZero(src);
|
||
|
}
|
||
|
|
||
|
CHECK(n == n_gold, cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////////
|
||
|
// sum
|
||
|
|
||
|
struct CV_GpuSumTest: cvtest::BaseTest
|
||
|
{
|
||
|
CV_GpuSumTest() {}
|
||
|
|
||
|
void run(int)
|
||
|
{
|
||
|
Mat src;
|
||
|
Scalar a, b;
|
||
|
double max_err = 1e-5;
|
||
|
|
||
|
int typemax = CV_32F;
|
||
|
for (int type = CV_8U; type <= typemax; ++type)
|
||
|
{
|
||
|
//
|
||
|
// sum
|
||
|
//
|
||
|
|
||
|
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 1), src);
|
||
|
a = sum(src);
|
||
|
b = sum(GpuMat(src));
|
||
|
if (abs(a[0] - b[0]) > src.size().area() * max_err)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "1 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[0], b[0]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 2), src);
|
||
|
a = sum(src);
|
||
|
b = sum(GpuMat(src));
|
||
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) > src.size().area() * max_err)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "2 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[1], b[1]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 3), src);
|
||
|
a = sum(src);
|
||
|
b = sum(GpuMat(src));
|
||
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2])> src.size().area() * max_err)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "3 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[2], b[2]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
gen(1 + rand() % 500, 1 + rand() % 500, CV_MAKETYPE(type, 4), src);
|
||
|
a = sum(src);
|
||
|
b = sum(GpuMat(src));
|
||
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2]) + abs(a[3] - b[3])> src.size().area() * max_err)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "4 cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[3], b[3]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
gen(1 + rand() % 500, 1 + rand() % 500, type, src);
|
||
|
a = sum(src);
|
||
|
b = sum(GpuMat(src));
|
||
|
if (abs(a[0] - b[0]) > src.size().area() * max_err)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "cols: %d, rows: %d, expected: %f, actual: %f\n", src.cols, src.rows, a[0], b[0]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// absSum
|
||
|
//
|
||
|
|
||
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 1), src);
|
||
|
b = absSum(GpuMat(src));
|
||
|
a = norm(src, NORM_L1);
|
||
|
if (abs(a[0] - b[0]) > src.size().area() * max_err)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// sqrSum
|
||
|
//
|
||
|
|
||
|
if (type != CV_8S)
|
||
|
{
|
||
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 1), src);
|
||
|
b = sqrSum(GpuMat(src));
|
||
|
Mat sqrsrc;
|
||
|
multiply(src, src, sqrsrc);
|
||
|
a = sum(sqrsrc);
|
||
|
if (abs(a[0] - b[0]) > src.size().area() * max_err)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 2), src);
|
||
|
b = sqrSum(GpuMat(src));
|
||
|
multiply(src, src, sqrsrc);
|
||
|
a = sum(sqrsrc);
|
||
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1])> src.size().area() * max_err * 2)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 3), src);
|
||
|
b = sqrSum(GpuMat(src));
|
||
|
multiply(src, src, sqrsrc);
|
||
|
a = sum(sqrsrc);
|
||
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2])> src.size().area() * max_err * 3)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
gen(1 + rand() % 200, 1 + rand() % 200, CV_MAKETYPE(type, 4), src);
|
||
|
b = sqrSum(GpuMat(src));
|
||
|
multiply(src, src, sqrsrc);
|
||
|
a = sum(sqrsrc);
|
||
|
if (abs(a[0] - b[0]) + abs(a[1] - b[1]) + abs(a[2] - b[2]) + abs(a[3] - b[3])> src.size().area() * max_err * 4)
|
||
|
{
|
||
|
ts->printf(cvtest::TS::CONSOLE, "type: %d, cols: %d, rows: %d, expected: %f, actual: %f\n", type, src.cols, src.rows, a[0], b[0]);
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void gen(int cols, int rows, int type, Mat& m)
|
||
|
{
|
||
|
m.create(rows, cols, type);
|
||
|
RNG rng;
|
||
|
rng.fill(m, RNG::UNIFORM, Scalar::all(0), Scalar::all(16));
|
||
|
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST(add, accuracy) { CV_GpuNppImageAddTest test; test.safe_run(); }
|
||
|
TEST(subtract, accuracy) { CV_GpuNppImageSubtractTest test; test.safe_run(); }
|
||
|
TEST(multiply, accuracy) { CV_GpuNppImageMultiplyTest test; test.safe_run(); }
|
||
|
TEST(divide, accuracy) { CV_GpuNppImageDivideTest test; test.safe_run(); }
|
||
|
TEST(transpose, accuracy) { CV_GpuNppImageTransposeTest test; test.safe_run(); }
|
||
|
TEST(absdiff, accuracy) { CV_GpuNppImageAbsdiffTest test; test.safe_run(); }
|
||
|
TEST(compare, accuracy) { CV_GpuNppImageCompareTest test; test.safe_run(); }
|
||
|
TEST(meanStdDev, accuracy) { CV_GpuNppImageMeanStdDevTest test; test.safe_run(); }
|
||
|
TEST(normDiff, accuracy) { CV_GpuNppImageNormTest test; test.safe_run(); }
|
||
|
TEST(flip, accuracy) { CV_GpuNppImageFlipTest test; test.safe_run(); }
|
||
|
TEST(LUT, accuracy) { CV_GpuNppImageLUTTest test; test.safe_run(); }
|
||
|
TEST(exp, accuracy) { CV_GpuNppImageExpTest test; test.safe_run(); }
|
||
|
TEST(log, accuracy) { CV_GpuNppImageLogTest test; test.safe_run(); }
|
||
|
TEST(magnitude, accuracy) { CV_GpuNppImageMagnitudeTest test; test.safe_run(); }
|
||
|
TEST(phase, accuracy) { CV_GpuNppImagePhaseTest test; test.safe_run(); }
|
||
|
TEST(cartToPolar, accuracy) { CV_GpuNppImageCartToPolarTest test; test.safe_run(); }
|
||
|
TEST(polarToCart, accuracy) { CV_GpuNppImagePolarToCartTest test; test.safe_run(); }
|
||
|
TEST(minMax, accuracy) { CV_GpuMinMaxTest test; test.safe_run(); }
|
||
|
TEST(minMaxLoc, accuracy) { CV_GpuMinMaxLocTest test; test.safe_run(); }
|
||
|
TEST(countNonZero, accuracy) { CV_GpuCountNonZeroTest test; test.safe_run(); }
|
||
|
TEST(sum, accuracy) { CV_GpuSumTest test; test.safe_run(); }
|