2014-08-14 16:50:07 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
2014-08-19 02:40:31 +08:00
|
|
|
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
2014-08-14 16:50:07 +08:00
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
2014-09-01 01:39:47 +08:00
|
|
|
#include "kdtree.hpp"
|
2014-08-14 16:50:07 +08:00
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
2014-08-19 02:40:31 +08:00
|
|
|
namespace ml
|
|
|
|
{
|
2014-08-14 16:50:07 +08:00
|
|
|
// This is reimplementation of kd-trees from cvkdtree*.* by Xavier Delacour, cleaned-up and
|
2014-08-19 02:40:31 +08:00
|
|
|
// adopted to work with the new OpenCV data structures.
|
2014-08-14 16:50:07 +08:00
|
|
|
|
|
|
|
// The algorithm is taken from:
|
|
|
|
// J.S. Beis and D.G. Lowe. Shape indexing using approximate nearest-neighbor search
|
|
|
|
// in highdimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog.,
|
|
|
|
// pages 1000--1006, 1997. http://citeseer.ist.psu.edu/beis97shape.html
|
|
|
|
|
|
|
|
const int MAX_TREE_DEPTH = 32;
|
|
|
|
|
|
|
|
KDTree::KDTree()
|
|
|
|
{
|
|
|
|
maxDepth = -1;
|
|
|
|
normType = NORM_L2;
|
|
|
|
}
|
|
|
|
|
|
|
|
KDTree::KDTree(InputArray _points, bool _copyData)
|
|
|
|
{
|
|
|
|
maxDepth = -1;
|
|
|
|
normType = NORM_L2;
|
|
|
|
build(_points, _copyData);
|
|
|
|
}
|
|
|
|
|
|
|
|
KDTree::KDTree(InputArray _points, InputArray _labels, bool _copyData)
|
|
|
|
{
|
|
|
|
maxDepth = -1;
|
|
|
|
normType = NORM_L2;
|
|
|
|
build(_points, _labels, _copyData);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct SubTree
|
|
|
|
{
|
|
|
|
SubTree() : first(0), last(0), nodeIdx(0), depth(0) {}
|
|
|
|
SubTree(int _first, int _last, int _nodeIdx, int _depth)
|
|
|
|
: first(_first), last(_last), nodeIdx(_nodeIdx), depth(_depth) {}
|
|
|
|
int first;
|
|
|
|
int last;
|
|
|
|
int nodeIdx;
|
|
|
|
int depth;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static float
|
|
|
|
medianPartition( size_t* ofs, int a, int b, const float* vals )
|
|
|
|
{
|
|
|
|
int k, a0 = a, b0 = b;
|
|
|
|
int middle = (a + b)/2;
|
|
|
|
while( b > a )
|
|
|
|
{
|
|
|
|
int i0 = a, i1 = (a+b)/2, i2 = b;
|
|
|
|
float v0 = vals[ofs[i0]], v1 = vals[ofs[i1]], v2 = vals[ofs[i2]];
|
|
|
|
int ip = v0 < v1 ? (v1 < v2 ? i1 : v0 < v2 ? i2 : i0) :
|
|
|
|
v0 < v2 ? i0 : (v1 < v2 ? i2 : i1);
|
|
|
|
float pivot = vals[ofs[ip]];
|
|
|
|
std::swap(ofs[ip], ofs[i2]);
|
|
|
|
|
|
|
|
for( i1 = i0, i0--; i1 <= i2; i1++ )
|
|
|
|
if( vals[ofs[i1]] <= pivot )
|
|
|
|
{
|
|
|
|
i0++;
|
|
|
|
std::swap(ofs[i0], ofs[i1]);
|
|
|
|
}
|
|
|
|
if( i0 == middle )
|
|
|
|
break;
|
|
|
|
if( i0 > middle )
|
|
|
|
b = i0 - (b == i0);
|
|
|
|
else
|
|
|
|
a = i0;
|
|
|
|
}
|
|
|
|
|
|
|
|
float pivot = vals[ofs[middle]];
|
|
|
|
int less = 0, more = 0;
|
|
|
|
for( k = a0; k < middle; k++ )
|
|
|
|
{
|
|
|
|
CV_Assert(vals[ofs[k]] <= pivot);
|
|
|
|
less += vals[ofs[k]] < pivot;
|
|
|
|
}
|
|
|
|
for( k = b0; k > middle; k-- )
|
|
|
|
{
|
|
|
|
CV_Assert(vals[ofs[k]] >= pivot);
|
|
|
|
more += vals[ofs[k]] > pivot;
|
|
|
|
}
|
|
|
|
CV_Assert(std::abs(more - less) <= 1);
|
|
|
|
|
|
|
|
return vals[ofs[middle]];
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
computeSums( const Mat& points, const size_t* ofs, int a, int b, double* sums )
|
|
|
|
{
|
|
|
|
int i, j, dims = points.cols;
|
|
|
|
const float* data = points.ptr<float>(0);
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
sums[j*2] = sums[j*2+1] = 0;
|
|
|
|
for( i = a; i <= b; i++ )
|
|
|
|
{
|
|
|
|
const float* row = data + ofs[i];
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
{
|
|
|
|
double t = row[j], s = sums[j*2] + t, s2 = sums[j*2+1] + t*t;
|
|
|
|
sums[j*2] = s; sums[j*2+1] = s2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void KDTree::build(InputArray _points, bool _copyData)
|
|
|
|
{
|
|
|
|
build(_points, noArray(), _copyData);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void KDTree::build(InputArray __points, InputArray __labels, bool _copyData)
|
|
|
|
{
|
|
|
|
Mat _points = __points.getMat(), _labels = __labels.getMat();
|
|
|
|
CV_Assert(_points.type() == CV_32F && !_points.empty());
|
|
|
|
std::vector<KDTree::Node>().swap(nodes);
|
|
|
|
|
|
|
|
if( !_copyData )
|
|
|
|
points = _points;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
points.release();
|
|
|
|
points.create(_points.size(), _points.type());
|
|
|
|
}
|
|
|
|
|
|
|
|
int i, j, n = _points.rows, ptdims = _points.cols, top = 0;
|
|
|
|
const float* data = _points.ptr<float>(0);
|
|
|
|
float* dstdata = points.ptr<float>(0);
|
|
|
|
size_t step = _points.step1();
|
|
|
|
size_t dstep = points.step1();
|
|
|
|
int ptpos = 0;
|
|
|
|
labels.resize(n);
|
|
|
|
const int* _labels_data = 0;
|
|
|
|
|
|
|
|
if( !_labels.empty() )
|
|
|
|
{
|
|
|
|
int nlabels = _labels.checkVector(1, CV_32S, true);
|
|
|
|
CV_Assert(nlabels == n);
|
|
|
|
_labels_data = _labels.ptr<int>();
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat sumstack(MAX_TREE_DEPTH*2, ptdims*2, CV_64F);
|
|
|
|
SubTree stack[MAX_TREE_DEPTH*2];
|
|
|
|
|
|
|
|
std::vector<size_t> _ptofs(n);
|
|
|
|
size_t* ptofs = &_ptofs[0];
|
|
|
|
|
|
|
|
for( i = 0; i < n; i++ )
|
|
|
|
ptofs[i] = i*step;
|
|
|
|
|
|
|
|
nodes.push_back(Node());
|
|
|
|
computeSums(points, ptofs, 0, n-1, sumstack.ptr<double>(top));
|
|
|
|
stack[top++] = SubTree(0, n-1, 0, 0);
|
|
|
|
int _maxDepth = 0;
|
|
|
|
|
|
|
|
while( --top >= 0 )
|
|
|
|
{
|
|
|
|
int first = stack[top].first, last = stack[top].last;
|
|
|
|
int depth = stack[top].depth, nidx = stack[top].nodeIdx;
|
|
|
|
int count = last - first + 1, dim = -1;
|
|
|
|
const double* sums = sumstack.ptr<double>(top);
|
|
|
|
double invCount = 1./count, maxVar = -1.;
|
|
|
|
|
|
|
|
if( count == 1 )
|
|
|
|
{
|
|
|
|
int idx0 = (int)(ptofs[first]/step);
|
|
|
|
int idx = _copyData ? ptpos++ : idx0;
|
|
|
|
nodes[nidx].idx = ~idx;
|
|
|
|
if( _copyData )
|
|
|
|
{
|
|
|
|
const float* src = data + ptofs[first];
|
|
|
|
float* dst = dstdata + idx*dstep;
|
|
|
|
for( j = 0; j < ptdims; j++ )
|
|
|
|
dst[j] = src[j];
|
|
|
|
}
|
|
|
|
labels[idx] = _labels_data ? _labels_data[idx0] : idx0;
|
|
|
|
_maxDepth = std::max(_maxDepth, depth);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// find the dimensionality with the biggest variance
|
|
|
|
for( j = 0; j < ptdims; j++ )
|
|
|
|
{
|
|
|
|
double m = sums[j*2]*invCount;
|
|
|
|
double varj = sums[j*2+1]*invCount - m*m;
|
|
|
|
if( maxVar < varj )
|
|
|
|
{
|
|
|
|
maxVar = varj;
|
|
|
|
dim = j;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int left = (int)nodes.size(), right = left + 1;
|
|
|
|
nodes.push_back(Node());
|
|
|
|
nodes.push_back(Node());
|
|
|
|
nodes[nidx].idx = dim;
|
|
|
|
nodes[nidx].left = left;
|
|
|
|
nodes[nidx].right = right;
|
|
|
|
nodes[nidx].boundary = medianPartition(ptofs, first, last, data + dim);
|
|
|
|
|
|
|
|
int middle = (first + last)/2;
|
|
|
|
double *lsums = (double*)sums, *rsums = lsums + ptdims*2;
|
|
|
|
computeSums(points, ptofs, middle+1, last, rsums);
|
|
|
|
for( j = 0; j < ptdims*2; j++ )
|
|
|
|
lsums[j] = sums[j] - rsums[j];
|
|
|
|
stack[top++] = SubTree(first, middle, left, depth+1);
|
|
|
|
stack[top++] = SubTree(middle+1, last, right, depth+1);
|
|
|
|
}
|
|
|
|
maxDepth = _maxDepth;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
struct PQueueElem
|
|
|
|
{
|
|
|
|
PQueueElem() : dist(0), idx(0) {}
|
|
|
|
PQueueElem(float _dist, int _idx) : dist(_dist), idx(_idx) {}
|
|
|
|
float dist;
|
|
|
|
int idx;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
int KDTree::findNearest(InputArray _vec, int K, int emax,
|
|
|
|
OutputArray _neighborsIdx, OutputArray _neighbors,
|
|
|
|
OutputArray _dist, OutputArray _labels) const
|
|
|
|
|
|
|
|
{
|
|
|
|
Mat vecmat = _vec.getMat();
|
|
|
|
CV_Assert( vecmat.isContinuous() && vecmat.type() == CV_32F && vecmat.total() == (size_t)points.cols );
|
|
|
|
const float* vec = vecmat.ptr<float>();
|
|
|
|
K = std::min(K, points.rows);
|
|
|
|
int ptdims = points.cols;
|
|
|
|
|
|
|
|
CV_Assert(K > 0 && (normType == NORM_L2 || normType == NORM_L1));
|
|
|
|
|
|
|
|
AutoBuffer<uchar> _buf((K+1)*(sizeof(float) + sizeof(int)));
|
|
|
|
int* idx = (int*)(uchar*)_buf;
|
|
|
|
float* dist = (float*)(idx + K + 1);
|
|
|
|
int i, j, ncount = 0, e = 0;
|
|
|
|
|
|
|
|
int qsize = 0, maxqsize = 1 << 10;
|
|
|
|
AutoBuffer<uchar> _pqueue(maxqsize*sizeof(PQueueElem));
|
|
|
|
PQueueElem* pqueue = (PQueueElem*)(uchar*)_pqueue;
|
|
|
|
emax = std::max(emax, 1);
|
|
|
|
|
|
|
|
for( e = 0; e < emax; )
|
|
|
|
{
|
|
|
|
float d, alt_d = 0.f;
|
|
|
|
int nidx;
|
|
|
|
|
|
|
|
if( e == 0 )
|
|
|
|
nidx = 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// take the next node from the priority queue
|
|
|
|
if( qsize == 0 )
|
|
|
|
break;
|
|
|
|
nidx = pqueue[0].idx;
|
|
|
|
alt_d = pqueue[0].dist;
|
|
|
|
if( --qsize > 0 )
|
|
|
|
{
|
|
|
|
std::swap(pqueue[0], pqueue[qsize]);
|
|
|
|
d = pqueue[0].dist;
|
|
|
|
for( i = 0;;)
|
|
|
|
{
|
|
|
|
int left = i*2 + 1, right = i*2 + 2;
|
|
|
|
if( left >= qsize )
|
|
|
|
break;
|
|
|
|
if( right < qsize && pqueue[right].dist < pqueue[left].dist )
|
|
|
|
left = right;
|
|
|
|
if( pqueue[left].dist >= d )
|
|
|
|
break;
|
|
|
|
std::swap(pqueue[i], pqueue[left]);
|
|
|
|
i = left;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( ncount == K && alt_d > dist[ncount-1] )
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
if( nidx < 0 )
|
|
|
|
break;
|
|
|
|
const Node& n = nodes[nidx];
|
|
|
|
|
|
|
|
if( n.idx < 0 )
|
|
|
|
{
|
|
|
|
i = ~n.idx;
|
|
|
|
const float* row = points.ptr<float>(i);
|
|
|
|
if( normType == NORM_L2 )
|
|
|
|
for( j = 0, d = 0.f; j < ptdims; j++ )
|
|
|
|
{
|
|
|
|
float t = vec[j] - row[j];
|
|
|
|
d += t*t;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
for( j = 0, d = 0.f; j < ptdims; j++ )
|
|
|
|
d += std::abs(vec[j] - row[j]);
|
|
|
|
|
|
|
|
dist[ncount] = d;
|
|
|
|
idx[ncount] = i;
|
|
|
|
for( i = ncount-1; i >= 0; i-- )
|
|
|
|
{
|
|
|
|
if( dist[i] <= d )
|
|
|
|
break;
|
|
|
|
std::swap(dist[i], dist[i+1]);
|
|
|
|
std::swap(idx[i], idx[i+1]);
|
|
|
|
}
|
|
|
|
ncount += ncount < K;
|
|
|
|
e++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
int alt;
|
|
|
|
if( vec[n.idx] <= n.boundary )
|
|
|
|
{
|
|
|
|
nidx = n.left;
|
|
|
|
alt = n.right;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
nidx = n.right;
|
|
|
|
alt = n.left;
|
|
|
|
}
|
|
|
|
|
|
|
|
d = vec[n.idx] - n.boundary;
|
|
|
|
if( normType == NORM_L2 )
|
|
|
|
d = d*d + alt_d;
|
|
|
|
else
|
|
|
|
d = std::abs(d) + alt_d;
|
|
|
|
// subtree prunning
|
|
|
|
if( ncount == K && d > dist[ncount-1] )
|
|
|
|
continue;
|
|
|
|
// add alternative subtree to the priority queue
|
|
|
|
pqueue[qsize] = PQueueElem(d, alt);
|
|
|
|
for( i = qsize; i > 0; )
|
|
|
|
{
|
|
|
|
int parent = (i-1)/2;
|
|
|
|
if( parent < 0 || pqueue[parent].dist <= d )
|
|
|
|
break;
|
|
|
|
std::swap(pqueue[i], pqueue[parent]);
|
|
|
|
i = parent;
|
|
|
|
}
|
|
|
|
qsize += qsize+1 < maxqsize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
K = std::min(K, ncount);
|
|
|
|
if( _neighborsIdx.needed() )
|
|
|
|
{
|
|
|
|
_neighborsIdx.create(K, 1, CV_32S, -1, true);
|
|
|
|
Mat nidx = _neighborsIdx.getMat();
|
|
|
|
Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx);
|
|
|
|
}
|
|
|
|
if( _dist.needed() )
|
|
|
|
sqrt(Mat(K, 1, CV_32F, dist), _dist);
|
|
|
|
|
|
|
|
if( _neighbors.needed() || _labels.needed() )
|
|
|
|
getPoints(Mat(K, 1, CV_32S, idx), _neighbors, _labels);
|
|
|
|
return K;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void KDTree::findOrthoRange(InputArray _lowerBound,
|
|
|
|
InputArray _upperBound,
|
|
|
|
OutputArray _neighborsIdx,
|
|
|
|
OutputArray _neighbors,
|
|
|
|
OutputArray _labels ) const
|
|
|
|
{
|
|
|
|
int ptdims = points.cols;
|
|
|
|
Mat lowerBound = _lowerBound.getMat(), upperBound = _upperBound.getMat();
|
|
|
|
CV_Assert( lowerBound.size == upperBound.size &&
|
|
|
|
lowerBound.isContinuous() &&
|
|
|
|
upperBound.isContinuous() &&
|
|
|
|
lowerBound.type() == upperBound.type() &&
|
|
|
|
lowerBound.type() == CV_32F &&
|
|
|
|
lowerBound.total() == (size_t)ptdims );
|
|
|
|
const float* L = lowerBound.ptr<float>();
|
|
|
|
const float* R = upperBound.ptr<float>();
|
|
|
|
|
|
|
|
std::vector<int> idx;
|
|
|
|
AutoBuffer<int> _stack(MAX_TREE_DEPTH*2 + 1);
|
|
|
|
int* stack = _stack;
|
|
|
|
int top = 0;
|
|
|
|
|
|
|
|
stack[top++] = 0;
|
|
|
|
|
|
|
|
while( --top >= 0 )
|
|
|
|
{
|
|
|
|
int nidx = stack[top];
|
|
|
|
if( nidx < 0 )
|
|
|
|
break;
|
|
|
|
const Node& n = nodes[nidx];
|
|
|
|
if( n.idx < 0 )
|
|
|
|
{
|
|
|
|
int j, i = ~n.idx;
|
|
|
|
const float* row = points.ptr<float>(i);
|
|
|
|
for( j = 0; j < ptdims; j++ )
|
|
|
|
if( row[j] < L[j] || row[j] >= R[j] )
|
|
|
|
break;
|
|
|
|
if( j == ptdims )
|
|
|
|
idx.push_back(i);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if( L[n.idx] <= n.boundary )
|
|
|
|
stack[top++] = n.left;
|
|
|
|
if( R[n.idx] > n.boundary )
|
|
|
|
stack[top++] = n.right;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _neighborsIdx.needed() )
|
|
|
|
{
|
|
|
|
_neighborsIdx.create((int)idx.size(), 1, CV_32S, -1, true);
|
|
|
|
Mat nidx = _neighborsIdx.getMat();
|
|
|
|
Mat(nidx.size(), CV_32S, &idx[0]).copyTo(nidx);
|
|
|
|
}
|
|
|
|
getPoints( idx, _neighbors, _labels );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void KDTree::getPoints(InputArray _idx, OutputArray _pts, OutputArray _labels) const
|
|
|
|
{
|
|
|
|
Mat idxmat = _idx.getMat(), pts, labelsmat;
|
|
|
|
CV_Assert( idxmat.isContinuous() && idxmat.type() == CV_32S &&
|
|
|
|
(idxmat.cols == 1 || idxmat.rows == 1) );
|
|
|
|
const int* idx = idxmat.ptr<int>();
|
|
|
|
int* dstlabels = 0;
|
|
|
|
|
|
|
|
int ptdims = points.cols;
|
|
|
|
int i, nidx = (int)idxmat.total();
|
|
|
|
if( nidx == 0 )
|
|
|
|
{
|
|
|
|
_pts.release();
|
|
|
|
_labels.release();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _pts.needed() )
|
|
|
|
{
|
|
|
|
_pts.create( nidx, ptdims, points.type());
|
|
|
|
pts = _pts.getMat();
|
|
|
|
}
|
|
|
|
|
|
|
|
if(_labels.needed())
|
|
|
|
{
|
|
|
|
_labels.create(nidx, 1, CV_32S, -1, true);
|
|
|
|
labelsmat = _labels.getMat();
|
|
|
|
CV_Assert( labelsmat.isContinuous() );
|
|
|
|
dstlabels = labelsmat.ptr<int>();
|
|
|
|
}
|
|
|
|
const int* srclabels = !labels.empty() ? &labels[0] : 0;
|
|
|
|
|
|
|
|
for( i = 0; i < nidx; i++ )
|
|
|
|
{
|
|
|
|
int k = idx[i];
|
|
|
|
CV_Assert( (unsigned)k < (unsigned)points.rows );
|
|
|
|
const float* src = points.ptr<float>(k);
|
|
|
|
if( !pts.empty() )
|
|
|
|
std::copy(src, src + ptdims, pts.ptr<float>(i));
|
|
|
|
if( dstlabels )
|
|
|
|
dstlabels[i] = srclabels ? srclabels[k] : k;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const float* KDTree::getPoint(int ptidx, int* label) const
|
|
|
|
{
|
|
|
|
CV_Assert( (unsigned)ptidx < (unsigned)points.rows);
|
|
|
|
if(label)
|
|
|
|
*label = labels[ptidx];
|
|
|
|
return points.ptr<float>(ptidx);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int KDTree::dims() const
|
|
|
|
{
|
|
|
|
return !points.empty() ? points.cols : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
2014-08-19 02:40:31 +08:00
|
|
|
}
|