opencv/modules/core/src/arithm.simd.hpp

1913 lines
59 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "opencv2/core/hal/intrin.hpp"
//=========================================
// Declare & Define & Dispatch in one step
//=========================================
// ARITHM_DISPATCHING_ONLY defined by arithm dispatch file
#undef ARITHM_DECLARATIONS_ONLY
#ifdef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
#define ARITHM_DECLARATIONS_ONLY
#endif
#undef ARITHM_DEFINITIONS_ONLY
#if !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY) && !defined(ARITHM_DISPATCHING_ONLY)
#define ARITHM_DEFINITIONS_ONLY
#endif
#ifdef ARITHM_DECLARATIONS_ONLY
#undef DEFINE_SIMD
#define DEFINE_SIMD(fun_name, c_type, ...) \
DECLARE_SIMD_FUN(fun_name, c_type)
#endif // ARITHM_DECLARATIONS_ONLY
#ifdef ARITHM_DEFINITIONS_ONLY
#undef DEFINE_SIMD
#define DEFINE_SIMD(fun_name, c_type, v_type, ...) \
DECLARE_SIMD_FUN(fun_name, c_type) \
DEFINE_SIMD_FUN(fun_name, c_type, v_type, __VA_ARGS__)
#endif // ARITHM_DEFINITIONS_ONLY
#ifdef ARITHM_DISPATCHING_ONLY
#undef DEFINE_SIMD
#define DEFINE_SIMD(fun_name, c_type, v_type, ...) \
DISPATCH_SIMD_FUN(fun_name, c_type, v_type, __VA_ARGS__)
#endif // ARITHM_DISPATCHING_ONLY
// workaround when neon miss support of double precision
#undef DEFINE_NOSIMD
#ifdef ARITHM_DEFINITIONS_ONLY
#define DEFINE_NOSIMD(fun_name, c_type, ...) \
DECLARE_SIMD_FUN(fun_name, c_type) \
DEFINE_NOSIMD_FUN(fun_name, c_type, __VA_ARGS__)
#else
#define DEFINE_NOSIMD DEFINE_SIMD
#endif // ARITHM_DEFINITIONS_ONLY
#ifndef SIMD_GUARD
#define DEFINE_SIMD_U8(fun, ...) \
DEFINE_SIMD(__CV_CAT(fun, 8u), uchar, v_uint8, __VA_ARGS__)
#define DEFINE_SIMD_S8(fun, ...) \
DEFINE_SIMD(__CV_CAT(fun, 8s), schar, v_int8, __VA_ARGS__)
#define DEFINE_SIMD_U16(fun, ...) \
DEFINE_SIMD(__CV_CAT(fun, 16u), ushort, v_uint16, __VA_ARGS__)
#define DEFINE_SIMD_S16(fun, ...) \
DEFINE_SIMD(__CV_CAT(fun, 16s), short, v_int16, __VA_ARGS__)
#define DEFINE_SIMD_S32(fun, ...) \
DEFINE_SIMD(__CV_CAT(fun, 32s), int, v_int32, __VA_ARGS__)
#define DEFINE_SIMD_F32(fun, ...) \
DEFINE_SIMD(__CV_CAT(fun, 32f), float, v_float32, __VA_ARGS__)
#if CV_SIMD_64F
#define DEFINE_SIMD_F64(fun, ...) \
DEFINE_SIMD(__CV_CAT(fun, 64f), double, v_float64, __VA_ARGS__)
#else
#define DEFINE_SIMD_F64(fun, ...) \
DEFINE_NOSIMD(__CV_CAT(fun, 64f), double, __VA_ARGS__)
#endif
#define DEFINE_SIMD_SAT(fun, ...) \
DEFINE_SIMD_U8(fun, __VA_ARGS__) \
DEFINE_SIMD_S8(fun, __VA_ARGS__) \
DEFINE_SIMD_U16(fun, __VA_ARGS__) \
DEFINE_SIMD_S16(fun, __VA_ARGS__)
#define DEFINE_SIMD_NSAT(fun, ...) \
DEFINE_SIMD_S32(fun, __VA_ARGS__) \
DEFINE_SIMD_F32(fun, __VA_ARGS__) \
DEFINE_SIMD_F64(fun, __VA_ARGS__)
#define DEFINE_SIMD_ALL(fun, ...) \
DEFINE_SIMD_SAT(fun, __VA_ARGS__) \
DEFINE_SIMD_NSAT(fun, __VA_ARGS__)
#endif // SIMD_GUARD
///////////////////////////////////////////////////////////////////////////
namespace cv { namespace hal {
#ifndef ARITHM_DISPATCHING_ONLY
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
#endif
#ifdef ARITHM_DEFINITIONS_ONLY
#if !CV_SIMD_64F
typedef int v_float64; // dummy
#endif
//=======================================
// Utility
//=======================================
/** add **/
template<typename T>
static inline T c_add(T a, T b)
{ return saturate_cast<T>(a + b); }
template<>
inline uchar c_add<uchar>(uchar a, uchar b)
{ return CV_FAST_CAST_8U(a + b); }
// scale
template<typename T1, typename T2>
static inline T1 c_add(T1 a, T1 b, T2 scalar)
{ return saturate_cast<T1>((T2)a * scalar + b); }
template<>
inline uchar c_add<uchar, float>(uchar a, uchar b, float scalar)
{ return saturate_cast<uchar>(CV_8TO32F(a) * scalar + b); }
// weight
template<typename T1, typename T2>
static inline T1 c_add(T1 a, T1 b, T2 alpha, T2 beta, T2 gamma)
{ return saturate_cast<T1>(a * alpha + b * beta + gamma); }
template<>
inline uchar c_add<uchar, float>(uchar a, uchar b, float alpha, float beta, float gamma)
{ return saturate_cast<uchar>(CV_8TO32F(a) * alpha + CV_8TO32F(b) * beta + gamma); }
/** sub **/
template<typename T>
static inline T c_sub(T a, T b)
{ return saturate_cast<T>(a - b); }
template<>
inline uchar c_sub<uchar>(uchar a, uchar b)
{ return CV_FAST_CAST_8U(a - b); }
/** max **/
template<typename T>
static inline T c_max(T a, T b)
{ return std::max(a, b); }
template<>
inline uchar c_max<uchar>(uchar a, uchar b)
{ return CV_MAX_8U(a, b); }
/** min **/
template<typename T>
static inline T c_min(T a, T b)
{ return std::min(a, b); }
template<>
inline uchar c_min<uchar>(uchar a, uchar b)
{ return CV_MIN_8U(a, b); }
/** absdiff **/
template<typename T>
static inline T c_absdiff(T a, T b)
{ return a > b ? a - b : b - a; }
template<>
inline schar c_absdiff(schar a, schar b)
{ return saturate_cast<schar>(std::abs(a - b)); }
template<>
inline short c_absdiff(short a, short b)
{ return saturate_cast<short>(std::abs(a - b)); }
// specializations to prevent "-0" results
template<>
inline float c_absdiff<float>(float a, float b)
{ return std::abs(a - b); }
template<>
inline double c_absdiff<double>(double a, double b)
{ return std::abs(a - b); }
/** multiply **/
template<typename T>
static inline T c_mul(T a, T b)
{ return saturate_cast<T>(a * b); }
template<>
inline uchar c_mul<uchar>(uchar a, uchar b)
{ return CV_FAST_CAST_8U(a * b); }
// scale
template<typename T1, typename T2>
static inline T1 c_mul(T1 a, T1 b, T2 scalar)
{ return saturate_cast<T1>(scalar * (T2)a * b); }
template<>
inline uchar c_mul<uchar, float>(uchar a, uchar b, float scalar)
{ return saturate_cast<uchar>(scalar * CV_8TO32F(a) * CV_8TO32F(b)); }
/** divide & reciprocal **/
template<typename T1, typename T2>
static inline T2 c_div(T1 a, T2 b)
{ return saturate_cast<T2>(a / b); }
// recip
template<>
inline uchar c_div<float, uchar>(float a, uchar b)
{ return saturate_cast<uchar>(a / CV_8TO32F(b)); }
// scale
template<typename T1, typename T2>
static inline T1 c_div(T1 a, T1 b, T2 scalar)
{ return saturate_cast<T1>(scalar * (T2)a / b); }
template<>
inline uchar c_div<uchar, float>(uchar a, uchar b, float scalar)
{ return saturate_cast<uchar>(scalar * CV_8TO32F(a) / CV_8TO32F(b)); }
//=======================================
// Arithmetic and logical operations
// +, -, *, /, &, |, ^, ~, abs ...
//=======================================
///////////////////////////// Operations //////////////////////////////////
// Add
template<typename T1, typename Tvec>
struct op_add
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a + b; }
static inline T1 r(T1 a, T1 b)
{ return c_add(a, b); }
};
// Subtract
template<typename T1, typename Tvec>
struct op_sub
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a - b; }
static inline T1 r(T1 a, T1 b)
{ return c_sub(a, b); }
};
// Max & Min
template<typename T1, typename Tvec>
struct op_max
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return v_max(a, b); }
static inline T1 r(T1 a, T1 b)
{ return c_max(a, b); }
};
template<typename T1, typename Tvec>
struct op_min
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return v_min(a, b); }
static inline T1 r(T1 a, T1 b)
{ return c_min(a, b); }
};
// Absolute difference
template<typename T1, typename Tvec>
struct op_absdiff
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return v_absdiff(a, b); }
static inline T1 r(T1 a, T1 b)
{ return c_absdiff(a, b); }
};
// Signed absolute difference, 's'
template<>
struct op_absdiff<schar, v_int8>
{
static inline v_int8 r(const v_int8& a, const v_int8& b)
{ return v_absdiffs(a, b); }
static inline schar r(schar a, schar b)
{ return c_absdiff(a, b); }
};
template<>
struct op_absdiff<short, v_int16>
{
static inline v_int16 r(const v_int16& a, const v_int16& b)
{ return v_absdiffs(a, b); }
static inline short r(short a, short b)
{ return c_absdiff(a, b); }
};
template<>
struct op_absdiff<int, v_int32>
{
static inline v_int32 r(const v_int32& a, const v_int32& b)
{ return v_reinterpret_as_s32(v_absdiff(a, b)); }
static inline int r(int a, int b)
{ return c_absdiff(a, b); }
};
// Logical
template<typename T1, typename Tvec>
struct op_or
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a | b; }
static inline T1 r(T1 a, T1 b)
{ return a | b; }
};
template<typename T1, typename Tvec>
struct op_xor
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a ^ b; }
static inline T1 r(T1 a, T1 b)
{ return a ^ b; }
};
template<typename T1, typename Tvec>
struct op_and
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a & b; }
static inline T1 r(T1 a, T1 b)
{ return a & b; }
};
template<typename T1, typename Tvec>
struct op_not
{
// ignored b from loader level
static inline Tvec r(const Tvec& a)
{ return ~a; }
static inline T1 r(T1 a, T1)
{ return ~a; }
};
//////////////////////////// Loaders /////////////////////////////////
#if CV_SIMD
template< template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
struct bin_loader
{
typedef OP<T1, Tvec> op;
static inline void l(const T1* src1, const T1* src2, T1* dst)
{
Tvec a = vx_load(src1);
Tvec b = vx_load(src2);
v_store(dst, op::r(a, b));
}
static inline void la(const T1* src1, const T1* src2, T1* dst)
{
Tvec a = vx_load_aligned(src1);
Tvec b = vx_load_aligned(src2);
v_store_aligned(dst, op::r(a, b)); // todo: try write without cache
}
static inline void l64(const T1* src1, const T1* src2, T1* dst)
{
Tvec a = vx_load_low(src1), b = vx_load_low(src2);
v_store_low(dst, op::r(a, b));
}
};
// void src2 for operation "not"
template<typename T1, typename Tvec>
struct bin_loader<op_not, T1, Tvec>
{
typedef op_not<T1, Tvec> op;
static inline void l(const T1* src1, const T1*, T1* dst)
{
Tvec a = vx_load(src1);
v_store(dst, op::r(a));
}
static inline void la(const T1* src1, const T1*, T1* dst)
{
Tvec a = vx_load_aligned(src1);
v_store_aligned(dst, op::r(a));
}
static inline void l64(const T1* src1, const T1*, T1* dst)
{
Tvec a = vx_load_low(src1);
v_store_low(dst, op::r(a));
}
};
#endif // CV_SIMD
//////////////////////////// Loops /////////////////////////////////
template<typename T1, typename T2>
static inline bool is_aligned(const T1* src1, const T1* src2, const T2* dst)
{ return (((size_t)src1|(size_t)src2|(size_t)dst) & (CV_SIMD_WIDTH - 1)) == 0; }
template<template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
static void bin_loop(const T1* src1, size_t step1, const T1* src2, size_t step2, T1* dst, size_t step, int width, int height)
{
typedef OP<T1, Tvec> op;
#if CV_SIMD
typedef bin_loader<OP, T1, Tvec> ldr;
enum {wide_step = Tvec::nlanes};
#if !CV_NEON && CV_SIMD_WIDTH == 16
enum {wide_step_l = wide_step * 2};
#else
enum {wide_step_l = wide_step};
#endif
#endif // CV_SIMD
step1 /= sizeof(T1);
step2 /= sizeof(T1);
step /= sizeof(T1);
for (; height--; src1 += step1, src2 += step2, dst += step)
{
int x = 0;
#if CV_SIMD
#if !CV_NEON && !CV_MSA
if (is_aligned(src1, src2, dst))
{
for (; x <= width - wide_step_l; x += wide_step_l)
{
ldr::la(src1 + x, src2 + x, dst + x);
#if CV_SIMD_WIDTH == 16
ldr::la(src1 + x + wide_step, src2 + x + wide_step, dst + x + wide_step);
#endif
}
}
else
#endif
for (; x <= width - wide_step_l; x += wide_step_l)
{
ldr::l(src1 + x, src2 + x, dst + x);
#if !CV_NEON && CV_SIMD_WIDTH == 16
ldr::l(src1 + x + wide_step, src2 + x + wide_step, dst + x + wide_step);
#endif
}
#if CV_SIMD_WIDTH == 16
for (; x <= width - 8/(int)sizeof(T1); x += 8/(int)sizeof(T1))
{
ldr::l64(src1 + x, src2 + x, dst + x);
}
#endif
#endif // CV_SIMD
#if CV_ENABLE_UNROLLED || CV_SIMD_WIDTH > 16
for (; x <= width - 4; x += 4)
{
T1 t0 = op::r(src1[x], src2[x]);
T1 t1 = op::r(src1[x + 1], src2[x + 1]);
dst[x] = t0; dst[x + 1] = t1;
t0 = op::r(src1[x + 2], src2[x + 2]);
t1 = op::r(src1[x + 3], src2[x + 3]);
dst[x + 2] = t0; dst[x + 3] = t1;
}
#endif
for (; x < width; x++)
dst[x] = op::r(src1[x], src2[x]);
}
vx_cleanup();
}
#if !CV_SIMD_64F
template<template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
static void bin_loop_nosimd(const T1* src1, size_t step1, const T1* src2, size_t step2, T1* dst, size_t step, int width, int height)
{
typedef OP<T1, Tvec/*dummy*/> op;
step1 /= sizeof(T1);
step2 /= sizeof(T1);
step /= sizeof(T1);
for (; height--; src1 += step1, src2 += step2, dst += step)
{
int x = 0;
for (; x <= width - 4; x += 4)
{
T1 t0 = op::r(src1[x], src2[x]);
T1 t1 = op::r(src1[x + 1], src2[x + 1]);
dst[x] = t0; dst[x + 1] = t1;
t0 = op::r(src1[x + 2], src2[x + 2]);
t1 = op::r(src1[x + 3], src2[x + 3]);
dst[x + 2] = t0; dst[x + 3] = t1;
}
for (; x < width; x++)
dst[x] = op::r(src1[x], src2[x]);
}
}
#define BIN_LOOP64F bin_loop_nosimd
#else
#define BIN_LOOP64F bin_loop
#endif //!CV_SIMD_64F
#endif // ARITHM_DEFINITIONS_ONLY
////////////////////////////////////////////////////////////////////////////////////
#ifndef SIMD_GUARD
#define BIN_ARGS(_T1) const _T1* src1, size_t step1, const _T1* src2, size_t step2, \
_T1* dst, size_t step, int width, int height
#define BIN_ARGS_PASS src1, step1, src2, step2, dst, step, width, height
#endif // SIMD_GUARD
#undef DECLARE_SIMD_FUN
#define DECLARE_SIMD_FUN(fun, _T1) void fun(BIN_ARGS(_T1));
#undef DISPATCH_SIMD_FUN
#define DISPATCH_SIMD_FUN(fun, _T1, _Tvec, _OP) \
void fun(BIN_ARGS(_T1), void*) \
{ \
CV_INSTRUMENT_REGION(); \
CALL_HAL(fun, __CV_CAT(cv_hal_, fun), BIN_ARGS_PASS) \
ARITHM_CALL_IPP(__CV_CAT(arithm_ipp_, fun), BIN_ARGS_PASS) \
CV_CPU_DISPATCH(fun, (BIN_ARGS_PASS), CV_CPU_DISPATCH_MODES_ALL); \
}
#undef DEFINE_SIMD_FUN
#define DEFINE_SIMD_FUN(fun, _T1, _Tvec, _OP) \
void fun(BIN_ARGS(_T1)) \
{ \
CV_INSTRUMENT_REGION(); \
bin_loop<_OP, _T1, _Tvec>(BIN_ARGS_PASS); \
}
#undef DEFINE_NOSIMD_FUN
#define DEFINE_NOSIMD_FUN(fun, _T1, _OP) \
void fun(BIN_ARGS(_T1)) \
{ \
CV_INSTRUMENT_REGION(); \
bin_loop_nosimd<_OP, _T1, v_float64>(BIN_ARGS_PASS); \
}
DEFINE_SIMD_ALL(add, op_add)
DEFINE_SIMD_ALL(sub, op_sub)
DEFINE_SIMD_ALL(min, op_min)
DEFINE_SIMD_ALL(max, op_max)
DEFINE_SIMD_ALL(absdiff, op_absdiff)
DEFINE_SIMD_U8(or, op_or)
DEFINE_SIMD_U8(xor, op_xor)
DEFINE_SIMD_U8(and, op_and)
// One source!, an exception for operation "not"
// we could use macros here but it's better to implement it
// with that way to give more clarification
// about how macroS "DEFINE_SIMD_*" are works
#if defined(ARITHM_DECLARATIONS_ONLY) || defined(ARITHM_DEFINITIONS_ONLY)
void not8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height);
#endif
#ifdef ARITHM_DEFINITIONS_ONLY
void not8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height)
{
CV_INSTRUMENT_REGION();
bin_loop<op_not, uchar, v_uint8>(src1, step1, src2, step2, dst, step, width, height);
}
#endif
#ifdef ARITHM_DISPATCHING_ONLY
void not8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void*)
{
CV_INSTRUMENT_REGION();
CALL_HAL(not8u, cv_hal_not8u, src1, step1, dst, step, width, height)
ARITHM_CALL_IPP(arithm_ipp_not8u, src1, step1, dst, step, width, height)
CV_CPU_DISPATCH(not8u, (src1, step1, src2, step2, dst, step, width, height), CV_CPU_DISPATCH_MODES_ALL);
}
#endif
//=======================================
// Compare
//=======================================
#ifdef ARITHM_DEFINITIONS_ONLY
///////////////////////////// Operations //////////////////////////////////
template<typename T1, typename Tvec>
struct op_cmplt
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a < b; }
static inline uchar r(T1 a, T1 b)
{ return (uchar)-(int)(a < b); }
};
template<typename T1, typename Tvec>
struct op_cmple
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a <= b; }
static inline uchar r(T1 a, T1 b)
{ return (uchar)-(int)(a <= b); }
};
template<typename T1, typename Tvec>
struct op_cmpeq
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a == b; }
static inline uchar r(T1 a, T1 b)
{ return (uchar)-(int)(a == b); }
};
template<typename T1, typename Tvec>
struct op_cmpne
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a != b; }
static inline uchar r(T1 a, T1 b)
{ return (uchar)-(int)(a != b); }
};
//////////////////////////// Loaders /////////////////////////////////
#if CV_SIMD
// todo: add support for RW alignment & stream
template<int nload, template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
struct cmp_loader_n
{
void l(const T1* src1, const T1* src2, uchar* dst);
};
template<template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
struct cmp_loader_n<sizeof(uchar), OP, T1, Tvec>
{
typedef OP<T1, Tvec> op;
static inline void l(const T1* src1, const T1* src2, uchar* dst)
{
Tvec a = vx_load(src1);
Tvec b = vx_load(src2);
v_store(dst, v_reinterpret_as_u8(op::r(a, b)));
}
};
template<template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
struct cmp_loader_n<sizeof(ushort), OP, T1, Tvec>
{
typedef OP<T1, Tvec> op;
enum {step = Tvec::nlanes};
static inline void l(const T1* src1, const T1* src2, uchar* dst)
{
Tvec c0 = op::r(vx_load(src1), vx_load(src2));
Tvec c1 = op::r(vx_load(src1 + step), vx_load(src2 + step));
v_store(dst, v_pack_b(v_reinterpret_as_u16(c0), v_reinterpret_as_u16(c1)));
}
};
template<template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
struct cmp_loader_n<sizeof(unsigned), OP, T1, Tvec>
{
typedef OP<T1, Tvec> op;
enum {step = Tvec::nlanes};
static inline void l(const T1* src1, const T1* src2, uchar* dst)
{
v_uint32 c0 = v_reinterpret_as_u32(op::r(vx_load(src1), vx_load(src2)));
v_uint32 c1 = v_reinterpret_as_u32(op::r(vx_load(src1 + step), vx_load(src2 + step)));
v_uint32 c2 = v_reinterpret_as_u32(op::r(vx_load(src1 + step * 2), vx_load(src2 + step * 2)));
v_uint32 c3 = v_reinterpret_as_u32(op::r(vx_load(src1 + step * 3), vx_load(src2 + step * 3)));
v_store(dst, v_pack_b(c0, c1, c2, c3));
}
};
template<template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
struct cmp_loader_n<sizeof(double), OP, T1, Tvec>
{
typedef OP<T1, Tvec> op;
enum {step = Tvec::nlanes};
static inline void l(const T1* src1, const T1* src2, uchar* dst)
{
v_uint64 c0 = v_reinterpret_as_u64(op::r(vx_load(src1), vx_load(src2)));
v_uint64 c1 = v_reinterpret_as_u64(op::r(vx_load(src1 + step), vx_load(src2 + step)));
v_uint64 c2 = v_reinterpret_as_u64(op::r(vx_load(src1 + step * 2), vx_load(src2 + step * 2)));
v_uint64 c3 = v_reinterpret_as_u64(op::r(vx_load(src1 + step * 3), vx_load(src2 + step * 3)));
v_uint64 c4 = v_reinterpret_as_u64(op::r(vx_load(src1 + step * 4), vx_load(src2 + step * 4)));
v_uint64 c5 = v_reinterpret_as_u64(op::r(vx_load(src1 + step * 5), vx_load(src2 + step * 5)));
v_uint64 c6 = v_reinterpret_as_u64(op::r(vx_load(src1 + step * 6), vx_load(src2 + step * 6)));
v_uint64 c7 = v_reinterpret_as_u64(op::r(vx_load(src1 + step * 7), vx_load(src2 + step * 7)));
v_store(dst, v_pack_b(c0, c1, c2, c3, c4, c5, c6, c7));
}
};
#endif // CV_SIMD
//////////////////////////// Loops /////////////////////////////////
template<template<typename T1, typename Tvec> class OP, typename T1, typename Tvec>
static void cmp_loop(const T1* src1, size_t step1, const T1* src2, size_t step2, uchar* dst, size_t step, int width, int height)
{
typedef OP<T1, Tvec> op;
#if CV_SIMD
typedef cmp_loader_n<sizeof(T1), OP, T1, Tvec> ldr;
enum {wide_step = Tvec::nlanes * sizeof(T1)};
#endif // CV_SIMD
step1 /= sizeof(T1);
step2 /= sizeof(T1);
for (; height--; src1 += step1, src2 += step2, dst += step)
{
int x = 0;
#if CV_SIMD
for (; x <= width - wide_step; x += wide_step)
{
ldr::l(src1 + x, src2 + x, dst + x);
}
#endif // CV_SIMD
#if CV_ENABLE_UNROLLED || CV_SIMD_WIDTH > 16
for (; x <= width - 4; x += 4)
{
uchar t0 = op::r(src1[x], src2[x]);
uchar t1 = op::r(src1[x + 1], src2[x + 1]);
dst[x] = t0; dst[x + 1] = t1;
t0 = op::r(src1[x + 2], src2[x + 2]);
t1 = op::r(src1[x + 3], src2[x + 3]);
dst[x + 2] = t0; dst[x + 3] = t1;
}
#endif
for (; x < width; x++)
dst[x] = op::r(src1[x], src2[x]);
}
vx_cleanup();
}
template<typename T1, typename Tvec>
static void cmp_loop(const T1* src1, size_t step1, const T1* src2, size_t step2,
uchar* dst, size_t step, int width, int height, int cmpop)
{
switch(cmpop)
{
case CMP_LT:
cmp_loop<op_cmplt, T1, Tvec>(src1, step1, src2, step2, dst, step, width, height);
break;
case CMP_GT:
cmp_loop<op_cmplt, T1, Tvec>(src2, step2, src1, step1, dst, step, width, height);
break;
case CMP_LE:
cmp_loop<op_cmple, T1, Tvec>(src1, step1, src2, step2, dst, step, width, height);
break;
case CMP_GE:
cmp_loop<op_cmple, T1, Tvec>(src2, step2, src1, step1, dst, step, width, height);
break;
case CMP_EQ:
cmp_loop<op_cmpeq, T1, Tvec>(src1, step1, src2, step2, dst, step, width, height);
break;
default:
CV_Assert(cmpop == CMP_NE);
cmp_loop<op_cmpne, T1, Tvec>(src1, step1, src2, step2, dst, step, width, height);
break;
}
}
#if !CV_SIMD_64F
template< template<typename T1, typename Tvec> class OP, typename T1>
static void cmp_loop_nosimd(const T1* src1, size_t step1, const T1* src2, size_t step2, uchar* dst, size_t step, int width, int height)
{
typedef OP<T1, v_int32 /*dummy*/> op;
step1 /= sizeof(T1);
step2 /= sizeof(T1);
for (; height--; src1 += step1, src2 += step2, dst += step)
{
int x = 0;
for (; x <= width - 4; x += 4)
{
uchar t0 = op::r(src1[x], src2[x]);
uchar t1 = op::r(src1[x + 1], src2[x + 1]);
dst[x] = t0; dst[x + 1] = t1;
t0 = op::r(src1[x + 2], src2[x + 2]);
t1 = op::r(src1[x + 3], src2[x + 3]);
dst[x + 2] = t0; dst[x + 3] = t1;
}
for (; x < width; x++)
dst[x] = op::r(src1[x], src2[x]);
}
}
static void cmp_loop_nosimd(const double* src1, size_t step1, const double* src2, size_t step2,
uchar* dst, size_t step, int width, int height, int cmpop)
{
switch(cmpop)
{
case CMP_LT:
cmp_loop_nosimd<op_cmplt, double>(src1, step1, src2, step2, dst, step, width, height);
break;
case CMP_GT:
cmp_loop_nosimd<op_cmplt, double>(src2, step2, src1, step1, dst, step, width, height);
break;
case CMP_LE:
cmp_loop_nosimd<op_cmple, double>(src1, step1, src2, step2, dst, step, width, height);
break;
case CMP_GE:
cmp_loop_nosimd<op_cmple, double>(src2, step2, src1, step1, dst, step, width, height);
break;
case CMP_EQ:
cmp_loop_nosimd<op_cmpeq, double>(src1, step1, src2, step2, dst, step, width, height);
break;
default:
CV_Assert(cmpop == CMP_NE);
cmp_loop_nosimd<op_cmpne, double>(src1, step1, src2, step2, dst, step, width, height);
break;
}
}
#endif // !CV_SIMD_64F
#endif // ARITHM_DEFINITIONS_ONLY
/////////////////////////////////////////////////////////////////////////////////////////////
#ifndef SIMD_GUARD
#define CMP_ARGS(_T1) const _T1* src1, size_t step1, const _T1* src2, size_t step2, \
uchar* dst, size_t step, int width, int height
#define CMP_ARGS_PASS src1, step1, src2, step2, dst, step, width, height
#endif // SIMD_GUARD
#undef DECLARE_SIMD_FUN
#define DECLARE_SIMD_FUN(fun, _T1) void fun(CMP_ARGS(_T1), int cmpop);
#undef DISPATCH_SIMD_FUN
#define DISPATCH_SIMD_FUN(fun, _T1, _Tvec, ...) \
void fun(CMP_ARGS(_T1), void* _cmpop) \
{ \
CV_INSTRUMENT_REGION(); \
CALL_HAL(fun, __CV_CAT(cv_hal_, fun), CMP_ARGS_PASS, *(int*)_cmpop) \
ARITHM_CALL_IPP(__CV_CAT(arithm_ipp_, fun), CMP_ARGS_PASS, *(int*)_cmpop) \
CV_CPU_DISPATCH(fun, (CMP_ARGS_PASS, *(int*)_cmpop), CV_CPU_DISPATCH_MODES_ALL); \
}
#undef DEFINE_SIMD_FUN
#define DEFINE_SIMD_FUN(fun, _T1, _Tvec, ...) \
void fun(CMP_ARGS(_T1), int cmpop) \
{ \
CV_INSTRUMENT_REGION(); \
cmp_loop<_T1, _Tvec>(CMP_ARGS_PASS, cmpop); \
}
#undef DEFINE_NOSIMD_FUN
#define DEFINE_NOSIMD_FUN(fun, _T1, _Tvec, ...) \
void fun(CMP_ARGS(_T1), int cmpop) \
{ \
CV_INSTRUMENT_REGION(); \
cmp_loop_nosimd(CMP_ARGS_PASS, cmpop); \
}
// todo: try to avoid define dispatcher functions using macros with these such cases
DEFINE_SIMD_ALL(cmp)
//=========================================================================
// scaling helpers for single and dual source
//
// Dual: Multiply, Div, AddWeighted
//
// Single: Reciprocal
//
//=========================================================================
#ifdef ARITHM_DEFINITIONS_ONLY
//////////////////////////// Loaders ///////////////////////////////
#if CV_SIMD
// todo: add support for RW alignment & stream
template<int nload, template<typename T1, typename T2, typename Tvec> class OP, typename T1, typename T2, typename Tvec>
struct scalar_loader_n
{
void l(const T1* src1, const T1* src2, const T2* scalar, T1* dst);
// single source
void l(const T1* src1, const T2* scalar, T1* dst);
};
template<template<typename T1, typename T2, typename Tvec> class OP, typename T1, typename T2, typename Tvec>
struct scalar_loader_n<sizeof(uchar), OP, T1, T2, Tvec>
{
typedef OP<T1, T2, v_int16> op;
static inline void l(const T1* src1, const T1* src2, const T2* scalar, T1* dst)
{
v_int16 v_src1 = v_reinterpret_as_s16(vx_load_expand(src1));
v_int16 v_src2 = v_reinterpret_as_s16(vx_load_expand(src2));
v_int32 t0, t1, t2, t3;
v_expand(v_src1, t0, t2);
v_expand(v_src2, t1, t3);
v_float32 f0, f1, f2, f3;
f0 = v_cvt_f32(t0);
f1 = v_cvt_f32(t1);
f2 = v_cvt_f32(t2);
f3 = v_cvt_f32(t3);
f0 = op::r(f0, f1, scalar);
f2 = op::r(f2, f3, scalar);
v_int32 r0 = v_round(f0);
v_int32 r1 = v_round(f2);
store(dst, v_src2, r0, r1);
}
static inline void l(const T1* src1, const T2* scalar, T1* dst)
{
v_int16 v_src1 = v_reinterpret_as_s16(vx_load_expand(src1));
v_int32 t0, t1;
v_expand(v_src1, t0, t1);
v_float32 f0, f1;
f0 = v_cvt_f32(t0);
f1 = v_cvt_f32(t1);
f0 = op::r(f0, scalar);
f1 = op::r(f1, scalar);
v_int32 r0 = v_round(f0);
v_int32 r1 = v_round(f1);
store(dst, v_src1, r0, r1);
}
static inline void store(uchar* dst, const v_int16& src, const v_int32& a, const v_int32& b)
{
v_pack_u_store(dst, op::pre(src, v_pack(a, b)));
}
static inline void store(schar* dst, const v_int16& src, const v_int32& a, const v_int32& b)
{
v_pack_store(dst, op::pre(src, v_pack(a, b)));
}
};
template<template<typename T1, typename T2, typename Tvec> class OP, typename T1, typename T2, typename Tvec>
struct scalar_loader_n<sizeof(ushort), OP, T1, T2, Tvec>
{
typedef typename V_RegTraits<Tvec>::w_reg Twvec;
typedef OP<T1, T2, Tvec> op;
static inline void l(const T1* src1, const T1* src2, const T2* scalar, T1* dst)
{
Tvec v_src1 = vx_load(src1);
Tvec v_src2 = vx_load(src2);
Twvec t0, t1, t2, t3;
v_expand(v_src1, t0, t2);
v_expand(v_src2, t1, t3);
v_float32 f0, f1, f2, f3;
f0 = v_cvt_f32(v_reinterpret_as_s32(t0));
f1 = v_cvt_f32(v_reinterpret_as_s32(t1));
f2 = v_cvt_f32(v_reinterpret_as_s32(t2));
f3 = v_cvt_f32(v_reinterpret_as_s32(t3));
f0 = op::r(f0, f1, scalar);
f2 = op::r(f2, f3, scalar);
v_int32 r0 = v_round(f0);
v_int32 r1 = v_round(f2);
store(dst, v_src2, r0, r1);
}
static inline void l(const T1* src1, const T2* scalar, T1* dst)
{
Tvec v_src1 = vx_load(src1);
Twvec t0, t1;
v_expand(v_src1, t0, t1);
v_float32 f0, f1;
f0 = v_cvt_f32(v_reinterpret_as_s32(t0));
f1 = v_cvt_f32(v_reinterpret_as_s32(t1));
f0 = op::r(f0, scalar);
f1 = op::r(f1, scalar);
v_int32 r0 = v_round(f0);
v_int32 r1 = v_round(f1);
store(dst, v_src1, r0, r1);
}
static inline void store(ushort* dst, const Tvec& src, const v_int32& a, const v_int32& b)
{
v_store(dst, op::pre(src, v_pack_u(a, b)));
}
static inline void store(short* dst, const Tvec& src, const v_int32& a, const v_int32& b)
{
v_store(dst, op::pre(src, v_pack(a, b)));
}
};
template<template<typename T1, typename T2, typename Tvec> class OP, typename T2>
struct scalar_loader_n<sizeof(int), OP, int, T2, v_int32>
{
typedef OP<int, T2, v_int32> op;
enum {step = v_int32::nlanes};
static inline void l(const int* src1, const int* src2, const T2* scalar, int* dst)
{
v_int32 v_src1 = vx_load(src1);
v_int32 v_src2 = vx_load(src2);
v_int32 v_src1s = vx_load(src1 + step);
v_int32 v_src2s = vx_load(src2 + step);
v_float32 f0, f1, f2, f3;
f0 = v_cvt_f32(v_reinterpret_as_s32(v_src1));
f1 = v_cvt_f32(v_reinterpret_as_s32(v_src2));
f2 = v_cvt_f32(v_reinterpret_as_s32(v_src1s));
f3 = v_cvt_f32(v_reinterpret_as_s32(v_src2s));
f0 = op::r(f0, f1, scalar);
f2 = op::r(f2, f3, scalar);
v_int32 r0 = v_round(f0);
v_int32 r1 = v_round(f2);
r0 = op::pre(v_src2, r0);
r1 = op::pre(v_src2s, r1);
v_store(dst, r0);
v_store(dst + step, r1);
}
static inline void l(const int* src1, const T2* scalar, int* dst)
{
v_int32 v_src1 = vx_load(src1);
v_int32 v_src1s = vx_load(src1 + step);
v_float32 f0, f1;
f0 = v_cvt_f32(v_src1);
f1 = v_cvt_f32(v_src1s);
f0 = op::r(f0, scalar);
f1 = op::r(f1, scalar);
v_int32 r0 = v_round(f0);
v_int32 r1 = v_round(f1);
r0 = op::pre(v_src1, r0);
r1 = op::pre(v_src1s, r1);
v_store(dst, r0);
v_store(dst + step, r1);
}
};
template<template<typename T1, typename T2, typename Tvec> class OP, typename T2>
struct scalar_loader_n<sizeof(float), OP, float, T2, v_float32>
{
typedef OP<float, T2, v_float32> op;
enum {step = v_float32::nlanes};
static inline void l(const float* src1, const float* src2, const T2* scalar, float* dst)
{
v_float32 v_src1 = vx_load(src1);
v_float32 v_src2 = vx_load(src2);
v_float32 v_src1s = vx_load(src1 + step);
v_float32 v_src2s = vx_load(src2 + step);
v_float32 r0 = op::r(v_src1, v_src2, scalar);
v_float32 r1 = op::r(v_src1s, v_src2s, scalar);
v_store(dst, r0);
v_store(dst + step, r1);
}
static inline void l(const float* src1, const T2* scalar, float* dst)
{
v_float32 v_src1 = vx_load(src1);
v_float32 v_src1s = vx_load(src1 + step);
v_float32 r0 = op::r(v_src1, scalar);
v_float32 r1 = op::r(v_src1s, scalar);
v_store(dst, r0);
v_store(dst + step, r1);
}
};
#endif // CV_SIMD
#if CV_SIMD_64F
template<template<typename T1, typename T2, typename Tvec> class OP>
struct scalar_loader_n<sizeof(int), OP, int, double, v_int32>
{
typedef OP<int, float, v_int32> op;
typedef OP<double, double, v_float64> op64;
enum {step = v_int32::nlanes};
static inline void l(const int* src1, const int* src2, const double* scalar, int* dst)
{
v_int32 v_src1 = vx_load(src1);
v_int32 v_src2 = vx_load(src2);
v_int32 v_src1s = vx_load(src1 + step);
v_int32 v_src2s = vx_load(src2 + step);
v_int32 r0 = r(v_src1, v_src2, scalar);
v_int32 r1 = r(v_src1s, v_src2s, scalar);
r0 = op::pre(v_src2, r0);
r1 = op::pre(v_src2s, r1);
v_store(dst, r0);
v_store(dst + step, r1);
}
static inline void l(const int* src1, const double* scalar, int* dst)
{
v_int32 v_src1 = vx_load(src1);
v_int32 v_src1s = vx_load(src1 + step);
v_int32 r0 = r(v_src1, scalar);
v_int32 r1 = r(v_src1s, scalar);
r0 = op::pre(v_src1, r0);
r1 = op::pre(v_src1s, r1);
v_store(dst, r0);
v_store(dst + step, r1);
}
static inline v_int32 r(const v_int32& a, const v_int32& b, const double* scalar)
{
v_float64 f0, f1, f2, f3;
f0 = v_cvt_f64(a);
f1 = v_cvt_f64_high(a);
f2 = v_cvt_f64(b);
f3 = v_cvt_f64_high(b);
v_float64 r0 = op64::r(f0, f2, scalar);
v_float64 r1 = op64::r(f1, f3, scalar);
return v_round(r0, r1);
}
static inline v_int32 r(const v_int32& a, const double* scalar)
{
v_float64 f0, f1;
f0 = v_cvt_f64(a);
f1 = v_cvt_f64_high(a);
v_float64 r0 = op64::r(f0, scalar);
v_float64 r1 = op64::r(f1, scalar);
return v_round(r0, r1);
}
};
template<template<typename T1, typename T2, typename Tvec> class OP>
struct scalar_loader_n<sizeof(float), OP, float, double, v_float32>
{
typedef OP<float, float, v_float32> op;
typedef OP<double, double, v_float64> op64;
enum {step = v_float32::nlanes};
static inline void l(const float* src1, const float* src2, const double* scalar, float* dst)
{
v_float32 v_src1 = vx_load(src1);
v_float32 v_src2 = vx_load(src2);
v_float32 v_src1s = vx_load(src1 + step);
v_float32 v_src2s = vx_load(src2 + step);
v_float32 r0 = r(v_src1, v_src2, scalar);
v_float32 r1 = r(v_src1s, v_src2s, scalar);
v_store(dst, r0);
v_store(dst + step, r1);
}
static inline void l(const float* src1, const double* scalar, float* dst)
{
v_float32 v_src1 = vx_load(src1);
v_float32 v_src1s = vx_load(src1 + step);
v_float32 r0 = r(v_src1, scalar);
v_float32 r1 = r(v_src1s, scalar);
v_store(dst, r0);
v_store(dst + step, r1);
}
static inline v_float32 r(const v_float32& a, const v_float32& b, const double* scalar)
{
v_float64 f0, f1, f2, f3;
f0 = v_cvt_f64(a);
f1 = v_cvt_f64_high(a);
f2 = v_cvt_f64(b);
f3 = v_cvt_f64_high(b);
v_float64 r0 = op64::r(f0, f2, scalar);
v_float64 r1 = op64::r(f1, f3, scalar);
return v_cvt_f32(r0, r1);
}
static inline v_float32 r(const v_float32& a, const double* scalar)
{
v_float64 f0, f1;
f0 = v_cvt_f64(a);
f1 = v_cvt_f64_high(a);
v_float64 r0 = op64::r(f0, scalar);
v_float64 r1 = op64::r(f1, scalar);
return v_cvt_f32(r0, r1);
}
};
template<template<typename T1, typename T2, typename Tvec> class OP>
struct scalar_loader_n<sizeof(double), OP, double, double, v_float64>
{
typedef OP<double, double, v_float64> op;
enum {step = v_float64::nlanes};
static inline void l(const double* src1, const double* src2, const double* scalar, double* dst)
{
v_float64 v_src1 = vx_load(src1);
v_float64 v_src2 = vx_load(src2);
v_float64 v_src1s = vx_load(src1 + step);
v_float64 v_src2s = vx_load(src2 + step);
v_float64 r0 = op::r(v_src1, v_src2, scalar);
v_float64 r1 = op::r(v_src1s, v_src2s, scalar);
v_store(dst, r0);
v_store(dst + step, r1);
}
static inline void l(const double* src1, const double* scalar, double* dst)
{
v_float64 v_src1 = vx_load(src1);
v_float64 v_src1s = vx_load(src1 + step);
v_float64 r0 = op::r(v_src1, scalar);
v_float64 r1 = op::r(v_src1s, scalar);
v_store(dst, r0);
v_store(dst + step, r1);
}
};
#endif // CV_SIMD_64F
//////////////////////////// Loops /////////////////////////////////
// dual source
template<template<typename T1, typename T2, typename Tvec> class OP, typename T1, typename T2, typename Tvec>
static void scalar_loop(const T1* src1, size_t step1, const T1* src2, size_t step2,
T1* dst, size_t step, int width, int height, const T2* scalar)
{
typedef OP<T1, T2, Tvec> op;
#if CV_SIMD
typedef scalar_loader_n<sizeof(T1), OP, T1, T2, Tvec> ldr;
const int wide_step = sizeof(T1) > sizeof(ushort) ? Tvec::nlanes * 2 :
sizeof(T1) == sizeof(uchar) ? Tvec::nlanes / 2 : Tvec::nlanes;
#endif // CV_SIMD
step1 /= sizeof(T1);
step2 /= sizeof(T1);
step /= sizeof(T1);
for (; height--; src1 += step1, src2 += step2, dst += step)
{
int x = 0;
#if CV_SIMD
for (; x <= width - wide_step; x += wide_step)
{
ldr::l(src1 + x, src2 + x, scalar, dst + x);
}
#endif // CV_SIMD
#if CV_ENABLE_UNROLLED || CV_SIMD_WIDTH > 16
for (; x <= width - 4; x += 4)
{
T1 t0 = op::r(src1[x], src2[x], scalar);
T1 t1 = op::r(src1[x + 1], src2[x + 1], scalar);
dst[x] = t0; dst[x + 1] = t1;
t0 = op::r(src1[x + 2], src2[x + 2], scalar);
t1 = op::r(src1[x + 3], src2[x + 3], scalar);
dst[x + 2] = t0; dst[x + 3] = t1;
}
#endif
for (; x < width; ++x)
dst[x] = op::r(src1[x], src2[x], scalar);
}
vx_cleanup();
}
// single source
template<template<typename T1, typename T2, typename Tvec> class OP, typename T1, typename T2, typename Tvec>
static void scalar_loop(const T1* src1, size_t step1, T1* dst, size_t step, int width, int height, const T2* scalar)
{
typedef OP<T1, T2, Tvec> op;
#if CV_SIMD
typedef scalar_loader_n<sizeof(T1), OP, T1, T2, Tvec> ldr;
const int wide_step = sizeof(T1) > sizeof(ushort) ? Tvec::nlanes * 2 :
sizeof(T1) == sizeof(uchar) ? Tvec::nlanes / 2 : Tvec::nlanes;
#endif // CV_SIMD
step1 /= sizeof(T1);
step /= sizeof(T1);
for (; height--; src1 += step1, dst += step)
{
int x = 0;
#if CV_SIMD
for (; x <= width - wide_step; x += wide_step)
{
ldr::l(src1 + x, scalar, dst + x);
}
#endif // CV_SIMD
#if CV_ENABLE_UNROLLED || CV_SIMD_WIDTH > 16
for (; x <= width - 4; x += 4)
{
T1 t0 = op::r(src1[x], scalar);
T1 t1 = op::r(src1[x + 1], scalar);
dst[x] = t0; dst[x + 1] = t1;
t0 = op::r(src1[x + 2], scalar);
t1 = op::r(src1[x + 3], scalar);
dst[x + 2] = t0; dst[x + 3] = t1;
}
#endif
for (; x < width; ++x)
dst[x] = op::r(src1[x], scalar);
}
vx_cleanup();
}
#if !CV_SIMD_64F
// dual source
template<template<typename T1, typename T2, typename Tvec> class OP, typename T1, typename T2, typename Tvec>
static void scalar_loop_nosimd(const T1* src1, size_t step1, const T1* src2, size_t step2,
T1* dst, size_t step, int width, int height, const T2* scalar)
{
typedef OP<T1, T2, Tvec> op;
step1 /= sizeof(T1);
step2 /= sizeof(T1);
step /= sizeof(T1);
for (; height--; src1 += step1, src2 += step2, dst += step)
{
int x = 0;
for (; x <= width - 4; x += 4)
{
T1 t0 = op::r(src1[x], src2[x], scalar);
T1 t1 = op::r(src1[x + 1], src2[x + 1], scalar);
dst[x] = t0; dst[x + 1] = t1;
t0 = op::r(src1[x + 2], src2[x + 2], scalar);
t1 = op::r(src1[x + 3], src2[x + 3], scalar);
dst[x + 2] = t0; dst[x + 3] = t1;
}
for (; x < width; ++x)
dst[x] = op::r(src1[x], src2[x], scalar);
}
}
// single source
template<template<typename T1, typename T2, typename Tvec> class OP, typename T1, typename T2, typename Tvec>
static void scalar_loop_nosimd(const T1* src1, size_t step1, T1* dst, size_t step, int width, int height, const T2* scalar)
{
typedef OP<T1, T2, Tvec> op;
step1 /= sizeof(T1);
step /= sizeof(T1);
for (; height--; src1 += step1, dst += step)
{
int x = 0;
for (; x <= width - 4; x += 4)
{
T1 t0 = op::r(src1[x], scalar);
T1 t1 = op::r(src1[x + 1], scalar);
dst[x] = t0; dst[x + 1] = t1;
t0 = op::r(src1[x + 2], scalar);
t1 = op::r(src1[x + 3], scalar);
dst[x + 2] = t0; dst[x + 3] = t1;
}
for (; x < width; ++x)
dst[x] = op::r(src1[x], scalar);
}
}
#define SCALAR_LOOP64F scalar_loop_nosimd
#else
#define SCALAR_LOOP64F scalar_loop
#endif // !CV_SIMD_64F
#endif // ARITHM_DEFINITIONS_ONLY
//=========================================================================
// Multiply
//=========================================================================
#ifdef ARITHM_DEFINITIONS_ONLY
///////////////////////////// Operations //////////////////////////////////
template<typename T1, typename Tvec>
struct op_mul
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a * b; }
static inline T1 r(T1 a, T1 b)
{ return saturate_cast<T1>(a * b); }
};
template<typename T1, typename T2, typename Tvec>
struct op_mul_scale
{
static inline v_float32 r(const v_float32& a, const v_float32& b, const T2* scalar)
{
const v_float32 v_scalar = vx_setall_f32(*scalar);
return v_scalar * a * b;
}
static inline T1 r(T1 a, T1 b, const T2* scalar)
{ return c_mul(a, b, *scalar); }
static inline Tvec pre(const Tvec&, const Tvec& res)
{ return res; }
};
template<>
struct op_mul_scale<double, double, v_float64>
{
#if CV_SIMD_64F
static inline v_float64 r(const v_float64& a, const v_float64& b, const double* scalar)
{
const v_float64 v_scalar = vx_setall_f64(*scalar);
return v_scalar * a * b;
}
#endif
static inline double r(double a, double b, const double* scalar)
{ return c_mul(a, b, *scalar); }
static inline v_float64 pre(const v_float64&, const v_float64& res)
{ return res; }
};
//////////////////////////// Loops /////////////////////////////////
template<typename T1, typename Tvec>
static void mul_loop(const T1* src1, size_t step1, const T1* src2, size_t step2,
T1* dst, size_t step, int width, int height, const double* scalar)
{
float fscalar = (float)*scalar;
if (std::fabs(fscalar - 1.0f) <= FLT_EPSILON)
{
bin_loop<op_mul, T1, Tvec>(src1, step1, src2, step2, dst, step, width, height);
}
else
{
scalar_loop<op_mul_scale, T1, float, Tvec>(src1, step1, src2, step2,
dst, step, width, height, &fscalar);
}
}
template<typename T1, typename Tvec>
static void mul_loop_d(const T1* src1, size_t step1, const T1* src2, size_t step2,
T1* dst, size_t step, int width, int height, const double* scalar)
{
if (std::fabs(*scalar - 1.0) <= FLT_EPSILON)
{
bin_loop<op_mul, T1, Tvec>(src1, step1, src2, step2, dst, step, width, height);
}
else
{
SCALAR_LOOP64F<op_mul_scale, T1, double, Tvec>(src1, step1, src2, step2,
dst, step, width, height, scalar);
}
}
template<>
void mul_loop_d<double, v_float64>(const double* src1, size_t step1, const double* src2, size_t step2,
double* dst, size_t step, int width, int height, const double* scalar)
{
if (*scalar == 1.0)
{
BIN_LOOP64F<op_mul, double, v_float64>(src1, step1, src2, step2, dst, step, width, height);
}
else
{
SCALAR_LOOP64F<op_mul_scale, double, double, v_float64>(src1, step1, src2, step2,
dst, step, width, height, scalar);
}
}
#endif // ARITHM_DEFINITIONS_ONLY
//////////////////////////////////////////////////////////////////////////
#undef SCALAR_ARGS
#define SCALAR_ARGS(_T1) const _T1* src1, size_t step1, const _T1* src2, size_t step2, \
_T1* dst, size_t step, int width, int height
#undef SCALAR_ARGS_PASS
#define SCALAR_ARGS_PASS src1, step1, src2, step2, dst, step, width, height
#undef DECLARE_SIMD_FUN
#define DECLARE_SIMD_FUN(fun, _T1) void fun(SCALAR_ARGS(_T1), const double* scalar);
#undef DISPATCH_SIMD_FUN
#define DISPATCH_SIMD_FUN(fun, _T1, _Tvec, ...) \
void fun(SCALAR_ARGS(_T1), void* scalar) \
{ \
CV_INSTRUMENT_REGION(); \
CALL_HAL(fun, __CV_CAT(cv_hal_, fun), \
SCALAR_ARGS_PASS, *(const double*)scalar) \
ARITHM_CALL_IPP(__CV_CAT(arithm_ipp_, fun), \
SCALAR_ARGS_PASS, *(const double*)scalar) \
CV_CPU_DISPATCH(fun, (SCALAR_ARGS_PASS, (const double*)scalar), \
CV_CPU_DISPATCH_MODES_ALL); \
}
#undef DEFINE_SIMD_FUN
#define DEFINE_SIMD_FUN(fun, _T1, _Tvec, op) \
void fun(SCALAR_ARGS(_T1), const double* scalar) \
{ \
CV_INSTRUMENT_REGION(); \
op<_T1, _Tvec>(SCALAR_ARGS_PASS, scalar); \
}
#undef DEFINE_NOSIMD_FUN
#define DEFINE_NOSIMD_FUN(fun, _T1, _OP) \
DEFINE_SIMD_FUN(fun, _T1, v_float64, _OP)
DEFINE_SIMD_SAT(mul, mul_loop)
DEFINE_SIMD_F32(mul, mul_loop_d)
DEFINE_SIMD_S32(mul, mul_loop_d)
DEFINE_SIMD_F64(mul, mul_loop_d)
//=========================================================================
// Div
//=========================================================================
#ifdef ARITHM_DEFINITIONS_ONLY
///////////////////////////// Operations //////////////////////////////////
template<typename T1, typename Tvec>
struct op_div_f
{
static inline Tvec r(const Tvec& a, const Tvec& b)
{ return a / b; }
static inline T1 r(T1 a, T1 b)
{ return a / b; }
};
template<typename T1, typename T2, typename Tvec>
struct op_div_scale
{
static inline v_float32 r(const v_float32& a, const v_float32& b, const T2* scalar)
{
const v_float32 v_scalar = vx_setall_f32(*scalar);
return a * v_scalar / b;
}
static inline Tvec pre(const Tvec& denom, const Tvec& res)
{
const Tvec v_zero = vx_setall<typename Tvec::lane_type>(0);
return v_select(denom == v_zero, v_zero, res);
}
static inline T1 r(T1 a, T1 denom, const T2* scalar)
{
CV_StaticAssert(std::numeric_limits<T1>::is_integer, "");
return denom != (T1)0 ? c_div(a, denom, *scalar) : (T1)0;
}
};
template<>
struct op_div_scale<float, float, v_float32>
{
static inline v_float32 r(const v_float32& a, const v_float32& b, const float* scalar)
{
const v_float32 v_scalar = vx_setall_f32(*scalar);
return a * v_scalar / b;
}
static inline float r(float a, float denom, const float* scalar)
{ return c_div(a, denom, *scalar); }
};
template<>
struct op_div_scale<double, double, v_float64>
{
#if CV_SIMD_64F
static inline v_float64 r(const v_float64& a, const v_float64& b, const double* scalar)
{
const v_float64 v_scalar = vx_setall_f64(*scalar);
return a * v_scalar / b;
}
#endif
static inline double r(double a, double denom, const double* scalar)
{ return c_div(a, denom, *scalar); }
};
//////////////////////////// Loops /////////////////////////////////
template<typename T1, typename Tvec>
static void div_loop(const T1* src1, size_t step1, const T1* src2, size_t step2,
T1* dst, size_t step, int width, int height, const double* scalar)
{
float fscalar = (float)*scalar;
// todo: add new intrinsics for integer divide
scalar_loop<op_div_scale, T1, float, Tvec>(src1, step1, src2, step2,
dst, step, width, height, &fscalar);
}
template<>
void div_loop<float, v_float32>(const float* src1, size_t step1, const float* src2, size_t step2,
float* dst, size_t step, int width, int height, const double* scalar)
{
float fscalar = (float)*scalar;
if (std::fabs(fscalar - 1.0f) <= FLT_EPSILON)
{
bin_loop<op_div_f, float, v_float32>(src1, step1, src2, step2, dst, step, width, height);
}
else
{
SCALAR_LOOP64F<op_div_scale, float, float, v_float32>(src1, step1, src2, step2,
dst, step, width, height, &fscalar);
}
}
template<>
void div_loop<double, v_float64>(const double* src1, size_t step1, const double* src2, size_t step2,
double* dst, size_t step, int width, int height, const double* scalar)
{
if (*scalar == 1.0)
{
BIN_LOOP64F<op_div_f, double, v_float64>(src1, step1, src2, step2, dst, step, width, height);
}
else
{
SCALAR_LOOP64F<op_div_scale, double, double, v_float64>(src1, step1, src2, step2,
dst, step, width, height, scalar);
}
}
#endif // ARITHM_DEFINITIONS_ONLY
//////////////////////////////////////////////////////////////////////////
DEFINE_SIMD_ALL(div, div_loop)
//=========================================================================
// AddWeighted
//=========================================================================
#ifdef ARITHM_DEFINITIONS_ONLY
///////////////////////////// Operations //////////////////////////////////
///// Add scale
template<typename T1, typename T2, typename Tvec>
struct op_add_scale
{
static inline v_float32 r(const v_float32& a, const v_float32& b, const T2* scalar)
{
const v_float32 v_alpha = vx_setall_f32(*scalar);
return v_fma(a, v_alpha, b);
}
static inline T1 r(T1 a, T1 b, const T2* scalar)
{ return c_add(a, b, *scalar); }
static inline Tvec pre(const Tvec&, const Tvec& res)
{ return res; }
};
template<>
struct op_add_scale<double, double, v_float64>
{
#if CV_SIMD_64F
static inline v_float64 r(const v_float64& a, const v_float64& b, const double* scalar)
{
const v_float64 v_alpha = vx_setall_f64(*scalar);
return v_fma(a, v_alpha, b);
}
#endif
static inline double r(double a, double b, const double* scalar)
{ return c_add(a, b, *scalar); }
static inline v_float64 pre(const v_float64&, const v_float64& res)
{ return res; }
};
///// Weighted sum
template<typename T1, typename T2, typename Tvec>
struct op_add_weighted
{
static inline v_float32 r(const v_float32& a, const v_float32& b, const T2* scalars)
{
const v_float32 v_alpha = vx_setall_f32(scalars[0]);
const v_float32 v_beta = vx_setall_f32(scalars[1]);
const v_float32 v_gamma = vx_setall_f32(scalars[2]);
return v_fma(a, v_alpha, v_fma(b, v_beta, v_gamma));
}
static inline T1 r(T1 a, T1 b, const T2* scalars)
{ return c_add(a, b, scalars[0], scalars[1], scalars[2]); }
static inline Tvec pre(const Tvec&, const Tvec& res)
{ return res; }
};
template<>
struct op_add_weighted<double, double, v_float64>
{
#if CV_SIMD_64F
static inline v_float64 r(const v_float64& a, const v_float64& b, const double* scalars)
{
const v_float64 v_alpha = vx_setall_f64(scalars[0]);
const v_float64 v_beta = vx_setall_f64(scalars[1]);
const v_float64 v_gamma = vx_setall_f64(scalars[2]);
return v_fma(a, v_alpha, v_fma(b, v_beta, v_gamma));
}
#endif
static inline double r(double a, double b, const double* scalars)
{ return c_add(a, b, scalars[0], scalars[1], scalars[2]); }
static inline v_float64 pre(const v_float64&, const v_float64& res)
{ return res; }
};
//////////////////////////// Loops /////////////////////////////////
template<typename T1, typename Tvec>
static void add_weighted_loop(const T1* src1, size_t step1, const T1* src2, size_t step2,
T1* dst, size_t step, int width, int height, const double* scalars)
{
float fscalars[] = {(float)scalars[0], (float)scalars[1], (float)scalars[2]};
if (fscalars[1] == 1.0f && fscalars[2] == 0.0f)
{
scalar_loop<op_add_scale, T1, float, Tvec>(src1, step1, src2, step2,
dst, step, width, height, fscalars);
}
else
{
scalar_loop<op_add_weighted, T1, float, Tvec>(src1, step1, src2, step2,
dst, step, width, height, fscalars);
}
}
template<typename T1, typename Tvec>
static void add_weighted_loop_d(const T1* src1, size_t step1, const T1* src2, size_t step2,
T1* dst, size_t step, int width, int height, const double* scalars)
{
if (scalars[1] == 1.0 && scalars[2] == 0.0)
{
SCALAR_LOOP64F<op_add_scale, T1, double, Tvec>(src1, step1, src2, step2,
dst, step, width, height, scalars);
}
else
{
SCALAR_LOOP64F<op_add_weighted, T1, double, Tvec>(src1, step1, src2, step2,
dst, step, width, height, scalars);
}
}
template<>
void add_weighted_loop_d<double, v_float64>(const double* src1, size_t step1, const double* src2, size_t step2,
double* dst, size_t step, int width, int height, const double* scalars)
{
if (scalars[1] == 1.0 && scalars[2] == 0.0)
{
SCALAR_LOOP64F<op_add_scale, double, double, v_float64>(src1, step1, src2, step2,
dst, step, width, height, scalars);
}
else
{
SCALAR_LOOP64F<op_add_weighted, double, double, v_float64>(src1, step1, src2, step2,
dst, step, width, height, scalars);
}
}
#endif // ARITHM_DEFINITIONS_ONLY
//////////////////////////////////////////////////////////////////////////
#undef DISPATCH_SIMD_FUN
#define DISPATCH_SIMD_FUN(fun, _T1, _Tvec, ...) \
void fun(SCALAR_ARGS(_T1), void* scalar) \
{ \
CV_INSTRUMENT_REGION(); \
CALL_HAL(fun, __CV_CAT(cv_hal_, fun), \
SCALAR_ARGS_PASS, (const double*)scalar) \
ARITHM_CALL_IPP(__CV_CAT(arithm_ipp_, fun), \
SCALAR_ARGS_PASS, (const double*)scalar) \
CV_CPU_DISPATCH(fun, (SCALAR_ARGS_PASS, (const double*)scalar), \
CV_CPU_DISPATCH_MODES_ALL); \
}
DEFINE_SIMD_SAT(addWeighted, add_weighted_loop)
DEFINE_SIMD_S32(addWeighted, add_weighted_loop_d)
DEFINE_SIMD_F32(addWeighted, add_weighted_loop_d)
DEFINE_SIMD_F64(addWeighted, add_weighted_loop_d)
//=======================================
// Reciprocal
//=======================================
#ifdef ARITHM_DEFINITIONS_ONLY
///////////////////////////// Operations //////////////////////////////////
template<typename T1, typename T2, typename Tvec>
struct op_recip
{
static inline v_float32 r(const v_float32& a, const T2* scalar)
{
const v_float32 v_scalar = vx_setall_f32(*scalar);
return v_scalar / a;
}
static inline Tvec pre(const Tvec& denom, const Tvec& res)
{
const Tvec v_zero = vx_setall<typename Tvec::lane_type>(0);
return v_select(denom == v_zero, v_zero, res);
}
static inline T1 r(T1 denom, const T2* scalar)
{
CV_StaticAssert(std::numeric_limits<T1>::is_integer, "");
return denom != (T1)0 ? c_div(*scalar, denom) : (T1)0;
}
};
template<>
struct op_recip<float, float, v_float32>
{
static inline v_float32 r(const v_float32& a, const float* scalar)
{
const v_float32 v_scalar = vx_setall_f32(*scalar);
return v_scalar / a;
}
static inline float r(float denom, const float* scalar)
{ return c_div(*scalar, denom); }
};
template<>
struct op_recip<double, double, v_float64>
{
#if CV_SIMD_64F
static inline v_float64 r(const v_float64& a, const double* scalar)
{
const v_float64 v_scalar = vx_setall_f64(*scalar);
return v_scalar / a;
}
#endif
static inline double r(double denom, const double* scalar)
{ return c_div(*scalar, denom); }
};
//////////////////////////// Loops /////////////////////////////////
template<typename T1, typename Tvec>
static void recip_loop(const T1* src1, size_t step1, T1* dst, size_t step, int width, int height, const double* scalar)
{
float fscalar = (float)*scalar;
scalar_loop<op_recip, T1, float, Tvec>(src1, step1, dst, step, width, height, &fscalar);
}
template<>
void recip_loop<double, v_float64>(const double* src1, size_t step1, double* dst, size_t step, int width, int height, const double* scalar)
{
SCALAR_LOOP64F<op_recip, double, double, v_float64>(src1, step1, dst, step, width, height, scalar);
}
#endif // ARITHM_DEFINITIONS_ONLY
//////////////////////////////////////////////////////////////////////////
#undef SCALAR_ARGS
#define SCALAR_ARGS(_T1) const _T1* src1, size_t step1, _T1* dst, size_t step, int width, int height
#undef SCALAR_ARGS_PASS
#define SCALAR_ARGS_PASS src1, step1, dst, step, width, height
#undef DISPATCH_SIMD_FUN
#define DISPATCH_SIMD_FUN(fun, _T1, _Tvec, ...) \
void fun(const _T1*, size_t, SCALAR_ARGS(_T1), void* scalar) \
{ \
CV_INSTRUMENT_REGION(); \
CALL_HAL(fun, __CV_CAT(cv_hal_, fun), \
SCALAR_ARGS_PASS, *(const double*)scalar) \
ARITHM_CALL_IPP(__CV_CAT(arithm_ipp_, fun), \
SCALAR_ARGS_PASS, *(const double*)scalar) \
CV_CPU_DISPATCH(fun, (SCALAR_ARGS_PASS, (const double*)scalar), \
CV_CPU_DISPATCH_MODES_ALL); \
}
DEFINE_SIMD_ALL(recip, recip_loop)
#ifndef ARITHM_DISPATCHING_ONLY
CV_CPU_OPTIMIZATION_NAMESPACE_END
#endif
#ifndef SIMD_GUARD
#define SIMD_GUARD
#endif
}} // cv::hal::