opencv/samples/dnn/fast_neural_style.py

53 lines
1.8 KiB
Python
Raw Normal View History

2018-05-03 13:12:12 +08:00
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
parser = argparse.ArgumentParser(
description='This script is used to run style transfer models from '
'https://github.com/onnx/models/tree/main/vision/style_transfer/fast_neural_style using OpenCV')
parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera')
parser.add_argument('--model', help='Path to .onnx model')
parser.add_argument('--width', default=-1, type=int, help='Resize input to specific width.')
parser.add_argument('--height', default=-1, type=int, help='Resize input to specific height.')
parser.add_argument('--median_filter', default=0, type=int, help='Kernel size of postprocessing blurring.')
args = parser.parse_args()
net = cv.dnn.readNetFromONNX(cv.samples.findFile(args.model))
2019-10-16 23:49:33 +08:00
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
if args.input:
cap = cv.VideoCapture(args.input)
else:
cap = cv.VideoCapture(0)
cv.namedWindow('Styled image', cv.WINDOW_NORMAL)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
inWidth = args.width if args.width != -1 else frame.shape[1]
inHeight = args.height if args.height != -1 else frame.shape[0]
inp = cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight),
swapRB=True, crop=False)
net.setInput(inp)
out = net.forward()
out = out.reshape(3, out.shape[2], out.shape[3])
out = out.transpose(1, 2, 0)
t, _ = net.getPerfProfile()
freq = cv.getTickFrequency() / 1000
2018-05-03 13:12:12 +08:00
print(t / freq, 'ms')
if args.median_filter:
out = cv.medianBlur(out, args.median_filter)
out = np.clip(out, 0, 255)
out = out.astype(np.uint8)
cv.imshow('Styled image', out)