2010-12-20 20:49:40 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
// Copyright (c) 2010, Paul Furgale, Chi Hay Tong
|
|
|
|
//
|
|
|
|
// The original code was written by Paul Furgale and Chi Hay Tong
|
|
|
|
// and later optimized and prepared for integration into OpenCV by Itseez.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "internal_shared.hpp"
|
|
|
|
#include "opencv2/gpu/device/limits_gpu.hpp"
|
|
|
|
|
|
|
|
using namespace cv::gpu;
|
|
|
|
using namespace cv::gpu::device;
|
|
|
|
|
|
|
|
#define CV_PI 3.1415926535897932384626433832795f
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace surf
|
|
|
|
{
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// Help funcs
|
|
|
|
|
|
|
|
// Wrapper for host reference to pass into kernel
|
|
|
|
template <typename T>
|
|
|
|
class DeviceReference
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit DeviceReference(T& host_val) : d_ptr(0), h_ptr(&host_val)
|
|
|
|
{
|
|
|
|
cudaSafeCall( cudaMalloc((void**)&d_ptr, sizeof(T)) );
|
|
|
|
cudaSafeCall( cudaMemcpy(d_ptr, h_ptr, sizeof(T), cudaMemcpyHostToDevice) );
|
|
|
|
}
|
|
|
|
|
|
|
|
~DeviceReference()
|
|
|
|
{
|
|
|
|
cudaSafeCall( cudaMemcpy(h_ptr, d_ptr, sizeof(T), cudaMemcpyDeviceToHost) );
|
|
|
|
cudaSafeCall( cudaFree(d_ptr) );
|
|
|
|
}
|
|
|
|
|
|
|
|
// Casting to device pointer
|
|
|
|
operator T*() {return d_ptr;}
|
|
|
|
operator const T*() const {return d_ptr;}
|
|
|
|
private:
|
|
|
|
T* d_ptr;
|
|
|
|
T* h_ptr;
|
|
|
|
};
|
|
|
|
|
|
|
|
__device__ void clearLastBit(int* f)
|
|
|
|
{
|
|
|
|
*f &= ~0x1;
|
|
|
|
}
|
|
|
|
__device__ void clearLastBit(float& f)
|
|
|
|
{
|
|
|
|
clearLastBit((int*)&f);
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ void setLastBit(int* f)
|
|
|
|
{
|
|
|
|
*f |= 0x1;
|
|
|
|
}
|
|
|
|
__device__ void setLastBit(float& f)
|
|
|
|
{
|
|
|
|
setLastBit((int*)&f);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// Global parameters
|
|
|
|
|
|
|
|
// The maximum number of features (before subpixel interpolation) that memory is reserved for.
|
|
|
|
__constant__ int c_max_candidates;
|
|
|
|
// The maximum number of features that memory is reserved for.
|
|
|
|
__constant__ int c_max_features;
|
|
|
|
// The number of intervals in the octave.
|
|
|
|
__constant__ int c_nIntervals;
|
|
|
|
// Mask sizes derived from the mask parameters
|
|
|
|
__constant__ float c_mask_width;
|
|
|
|
// Mask sizes derived from the mask parameters
|
|
|
|
__constant__ float c_mask_height;
|
|
|
|
// Mask sizes derived from the mask parameters
|
|
|
|
__constant__ float c_dxy_center_offset;
|
|
|
|
// Mask sizes derived from the mask parameters
|
|
|
|
__constant__ float c_dxy_half_width;
|
|
|
|
// Mask sizes derived from the mask parameters
|
|
|
|
__constant__ float c_dxy_scale;
|
|
|
|
// The scale associated with the first interval of the first octave
|
|
|
|
__constant__ float c_initialScale;
|
|
|
|
//! The interest operator threshold
|
|
|
|
__constant__ float c_threshold;
|
|
|
|
|
|
|
|
// Ther octave
|
|
|
|
__constant__ int c_octave;
|
|
|
|
// The width of the octave buffer.
|
|
|
|
__constant__ int c_x_size;
|
|
|
|
// The height of the octave buffer.
|
|
|
|
__constant__ int c_y_size;
|
|
|
|
// The size of the octave border in pixels.
|
|
|
|
__constant__ int c_border;
|
|
|
|
// The step size used in this octave in pixels.
|
|
|
|
__constant__ int c_step;
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// Integral image texture
|
|
|
|
|
|
|
|
texture<float, 2, cudaReadModeElementType> sumTex(0, cudaFilterModeLinear, cudaAddressModeClamp);
|
|
|
|
|
|
|
|
__device__ float iiAreaLookupCDHalfWH(float cx, float cy, float halfWidth, float halfHeight)
|
|
|
|
{
|
|
|
|
float result = 0.f;
|
|
|
|
|
|
|
|
result += tex2D(sumTex, cx - halfWidth, cy - halfHeight);
|
|
|
|
result -= tex2D(sumTex, cx + halfWidth, cy - halfHeight);
|
|
|
|
result -= tex2D(sumTex, cx - halfWidth, cy + halfHeight);
|
|
|
|
result += tex2D(sumTex, cx + halfWidth, cy + halfHeight);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// Hessian
|
|
|
|
|
|
|
|
__device__ float evalDyy(float x, float y, float t, float mask_width, float mask_height, float fscale)
|
|
|
|
{
|
|
|
|
float Dyy = 0.f;
|
|
|
|
|
|
|
|
Dyy += iiAreaLookupCDHalfWH(x, y, mask_width, mask_height);
|
|
|
|
Dyy -= t * iiAreaLookupCDHalfWH(x, y, mask_width, fscale);
|
|
|
|
|
|
|
|
Dyy *= 1.0f / (fscale * fscale);
|
|
|
|
|
|
|
|
return Dyy;
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ float evalDxx(float x, float y, float t, float mask_width, float mask_height, float fscale)
|
|
|
|
{
|
|
|
|
float Dxx = 0.f;
|
|
|
|
|
|
|
|
Dxx += iiAreaLookupCDHalfWH(x, y, mask_height, mask_width);
|
|
|
|
Dxx -= t * iiAreaLookupCDHalfWH(x, y, fscale , mask_width);
|
|
|
|
|
|
|
|
Dxx *= 1.0f / (fscale * fscale);
|
|
|
|
|
|
|
|
return Dxx;
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ float evalDxy(float x, float y, float fscale)
|
|
|
|
{
|
|
|
|
float center_offset = c_dxy_center_offset * fscale;
|
|
|
|
float half_width = c_dxy_half_width * fscale;
|
|
|
|
|
|
|
|
float Dxy = 0.f;
|
|
|
|
|
|
|
|
Dxy += iiAreaLookupCDHalfWH(x - center_offset, y - center_offset, half_width, half_width);
|
|
|
|
Dxy -= iiAreaLookupCDHalfWH(x - center_offset, y + center_offset, half_width, half_width);
|
|
|
|
Dxy += iiAreaLookupCDHalfWH(x + center_offset, y + center_offset, half_width, half_width);
|
|
|
|
Dxy -= iiAreaLookupCDHalfWH(x + center_offset, y - center_offset, half_width, half_width);
|
|
|
|
|
|
|
|
Dxy *= 1.0f / (fscale * fscale);
|
|
|
|
|
|
|
|
return Dxy;
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ float calcScale(int hidx_z)
|
|
|
|
{
|
|
|
|
float d = (c_initialScale * (1 << c_octave)) / (c_nIntervals - 2);
|
|
|
|
return c_initialScale * (1 << c_octave) + d * (hidx_z - 1.0f) + 0.5f;
|
|
|
|
}
|
|
|
|
|
|
|
|
__global__ void fasthessian(PtrStepf hessianBuffer)
|
|
|
|
{
|
|
|
|
// Determine the indices in the Hessian buffer
|
|
|
|
int hidx_x = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
int hidx_y = threadIdx.y + blockIdx.y * blockDim.y;
|
|
|
|
int hidx_z = threadIdx.z;
|
|
|
|
|
|
|
|
float fscale = calcScale(hidx_z);
|
|
|
|
|
|
|
|
// Compute the lookup location of the mask center
|
|
|
|
float x = hidx_x * c_step + c_border;
|
|
|
|
float y = hidx_y * c_step + c_border;
|
|
|
|
|
|
|
|
// Scale the mask dimensions according to the scale
|
|
|
|
if (hidx_x < c_x_size && hidx_y < c_y_size && hidx_z < c_nIntervals)
|
|
|
|
{
|
|
|
|
float mask_width = c_mask_width * fscale;
|
|
|
|
float mask_height = c_mask_height * fscale;
|
|
|
|
|
|
|
|
// Compute the filter responses
|
|
|
|
float Dyy = evalDyy(x, y, c_mask_height, mask_width, mask_height, fscale);
|
|
|
|
float Dxx = evalDxx(x, y, c_mask_height, mask_width, mask_height, fscale);
|
|
|
|
float Dxy = evalDxy(x, y, fscale);
|
|
|
|
|
|
|
|
// Combine the responses and store the Laplacian sign
|
|
|
|
float result = (Dxx * Dyy) - c_dxy_scale * (Dxy * Dxy);
|
|
|
|
|
|
|
|
if (Dxx + Dyy > 0.f)
|
|
|
|
setLastBit(result);
|
|
|
|
else
|
|
|
|
clearLastBit(result);
|
|
|
|
|
|
|
|
hessianBuffer.ptr(c_y_size * hidx_z + hidx_y)[hidx_x] = result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void fasthessian_gpu(PtrStepf hessianBuffer, int nIntervals, int x_size, int y_size)
|
|
|
|
{
|
|
|
|
dim3 threads;
|
|
|
|
threads.x = 16;
|
|
|
|
threads.y = 8;
|
|
|
|
threads.z = nIntervals;
|
|
|
|
|
|
|
|
dim3 grid;
|
|
|
|
grid.x = divUp(x_size, threads.x);
|
|
|
|
grid.y = divUp(y_size, threads.y);
|
|
|
|
grid.z = 1;
|
|
|
|
|
|
|
|
fasthessian<<<grid, threads>>>(hessianBuffer);
|
|
|
|
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// NONMAX
|
2010-12-21 22:02:09 +08:00
|
|
|
|
|
|
|
texture<int, 2, cudaReadModeElementType> maskSumTex(0, cudaFilterModePoint, cudaAddressModeClamp);
|
|
|
|
|
|
|
|
struct WithOutMask
|
|
|
|
{
|
|
|
|
static __device__ bool check(float, float, float)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
struct WithMask
|
|
|
|
{
|
|
|
|
static __device__ bool check(float x, float y, float fscale)
|
|
|
|
{
|
|
|
|
float half_width = fscale / 2;
|
|
|
|
|
|
|
|
float result = 0.f;
|
2010-12-20 20:49:40 +08:00
|
|
|
|
2010-12-21 22:02:09 +08:00
|
|
|
result += tex2D(maskSumTex, x - half_width, y - half_width);
|
|
|
|
result -= tex2D(maskSumTex, x + half_width, y - half_width);
|
|
|
|
result -= tex2D(maskSumTex, x - half_width, y + half_width);
|
|
|
|
result += tex2D(maskSumTex, x + half_width, y + half_width);
|
|
|
|
|
|
|
|
result /= (fscale * fscale);
|
|
|
|
|
|
|
|
return (result >= 0.5f);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename Mask>
|
2010-12-20 20:49:40 +08:00
|
|
|
__global__ void nonmaxonly(PtrStepf hessianBuffer, int4* maxPosBuffer, unsigned int* maxCounter)
|
|
|
|
{
|
|
|
|
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
|
|
|
|
|
|
|
extern __shared__ float fh_vals[];
|
|
|
|
|
|
|
|
// The hidx variables are the indices to the hessian buffer.
|
|
|
|
int hidx_x = threadIdx.x + blockIdx.x * (blockDim.x - 2);
|
|
|
|
int hidx_y = threadIdx.y + blockIdx.y * (blockDim.y - 2);
|
|
|
|
int hidx_z = threadIdx.z;
|
|
|
|
int localLin = threadIdx.x + threadIdx.y * blockDim.x + threadIdx.z * blockDim.x * blockDim.y;
|
|
|
|
|
|
|
|
// Is this thread within the hessian buffer?
|
|
|
|
if (hidx_x < c_x_size && hidx_y < c_y_size && hidx_z < c_nIntervals)
|
|
|
|
{
|
|
|
|
fh_vals[localLin] = hessianBuffer.ptr(c_y_size * hidx_z + hidx_y)[hidx_x];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// Is this location one of the ones being processed for nonmax suppression.
|
|
|
|
// Blocks overlap by one so we don't process the border threads.
|
|
|
|
bool inBounds2 = threadIdx.x > 0 && threadIdx.x < blockDim.x-1 && hidx_x < c_x_size - 1
|
|
|
|
&& threadIdx.y > 0 && threadIdx.y < blockDim.y-1 && hidx_y < c_y_size - 1
|
|
|
|
&& threadIdx.z > 0 && threadIdx.z < blockDim.z-1;
|
|
|
|
|
|
|
|
float val = fh_vals[localLin];
|
|
|
|
|
2010-12-21 22:02:09 +08:00
|
|
|
// Compute the lookup location of the mask center
|
|
|
|
float x = hidx_x * c_step + c_border;
|
|
|
|
float y = hidx_y * c_step + c_border;
|
|
|
|
float fscale = calcScale(hidx_z);
|
|
|
|
|
|
|
|
if (inBounds2 && val >= c_threshold && Mask::check(x, y, fscale))
|
2010-12-20 20:49:40 +08:00
|
|
|
{
|
|
|
|
// Check to see if we have a max (in its 26 neighbours)
|
|
|
|
int zoff = blockDim.x * blockDim.y;
|
|
|
|
bool condmax = val > fh_vals[localLin + 1]
|
|
|
|
&& val > fh_vals[localLin - 1]
|
|
|
|
&& val > fh_vals[localLin - blockDim.x + 1]
|
|
|
|
&& val > fh_vals[localLin - blockDim.x ]
|
|
|
|
&& val > fh_vals[localLin - blockDim.x - 1]
|
|
|
|
&& val > fh_vals[localLin + blockDim.x + 1]
|
|
|
|
&& val > fh_vals[localLin + blockDim.x ]
|
|
|
|
&& val > fh_vals[localLin + blockDim.x - 1]
|
|
|
|
|
|
|
|
&& val > fh_vals[localLin - zoff + 1]
|
|
|
|
&& val > fh_vals[localLin - zoff ]
|
|
|
|
&& val > fh_vals[localLin - zoff - 1]
|
|
|
|
&& val > fh_vals[localLin - zoff - blockDim.x + 1]
|
|
|
|
&& val > fh_vals[localLin - zoff - blockDim.x ]
|
|
|
|
&& val > fh_vals[localLin - zoff - blockDim.x - 1]
|
|
|
|
&& val > fh_vals[localLin - zoff + blockDim.x + 1]
|
|
|
|
&& val > fh_vals[localLin - zoff + blockDim.x ]
|
|
|
|
&& val > fh_vals[localLin - zoff + blockDim.x - 1]
|
|
|
|
|
|
|
|
&& val > fh_vals[localLin + zoff + 1]
|
|
|
|
&& val > fh_vals[localLin + zoff ]
|
|
|
|
&& val > fh_vals[localLin + zoff - 1]
|
|
|
|
&& val > fh_vals[localLin + zoff - blockDim.x + 1]
|
|
|
|
&& val > fh_vals[localLin + zoff - blockDim.x ]
|
|
|
|
&& val > fh_vals[localLin + zoff - blockDim.x - 1]
|
|
|
|
&& val > fh_vals[localLin + zoff + blockDim.x + 1]
|
|
|
|
&& val > fh_vals[localLin + zoff + blockDim.x ]
|
|
|
|
&& val > fh_vals[localLin + zoff + blockDim.x - 1]
|
|
|
|
;
|
|
|
|
|
|
|
|
if(condmax)
|
|
|
|
{
|
|
|
|
unsigned int i = atomicInc(maxCounter,(unsigned int) -1);
|
|
|
|
|
|
|
|
if (i < c_max_candidates)
|
|
|
|
{
|
|
|
|
int4 f = {hidx_x, hidx_y, threadIdx.z, c_octave};
|
|
|
|
maxPosBuffer[i] = f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void nonmaxonly_gpu(PtrStepf hessianBuffer, int4* maxPosBuffer, unsigned int& maxCounter,
|
2010-12-21 22:02:09 +08:00
|
|
|
int nIntervals, int x_size, int y_size, bool use_mask)
|
2010-12-20 20:49:40 +08:00
|
|
|
{
|
|
|
|
dim3 threads;
|
|
|
|
threads.x = 16;
|
|
|
|
threads.y = 8;
|
|
|
|
threads.z = nIntervals;
|
|
|
|
|
|
|
|
dim3 grid;
|
|
|
|
grid.x = divUp(x_size, threads.x - 2);
|
|
|
|
grid.y = divUp(y_size, threads.y - 2);
|
|
|
|
grid.z = 1;
|
|
|
|
|
|
|
|
const size_t smem_size = threads.x * threads.y * threads.z * sizeof(float);
|
|
|
|
|
|
|
|
DeviceReference<unsigned int> maxCounterWrapper(maxCounter);
|
|
|
|
|
2010-12-21 22:02:09 +08:00
|
|
|
if (use_mask)
|
|
|
|
nonmaxonly<WithMask><<<grid, threads, smem_size>>>(hessianBuffer, maxPosBuffer, maxCounterWrapper);
|
|
|
|
else
|
|
|
|
nonmaxonly<WithOutMask><<<grid, threads, smem_size>>>(hessianBuffer, maxPosBuffer, maxCounterWrapper);
|
2010-12-20 20:49:40 +08:00
|
|
|
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// INTERPOLATION
|
|
|
|
|
|
|
|
#define MID_IDX 1
|
|
|
|
__global__ void fh_interp_extremum(PtrStepf hessianBuffer, const int4* maxPosBuffer,
|
|
|
|
KeyPoint_GPU* featuresBuffer, unsigned int* featureCounter)
|
|
|
|
{
|
|
|
|
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
|
|
|
|
|
|
|
int hidx_x = maxPosBuffer[blockIdx.x].x - 1 + threadIdx.x;
|
|
|
|
int hidx_y = maxPosBuffer[blockIdx.x].y - 1 + threadIdx.y;
|
|
|
|
int hidx_z = maxPosBuffer[blockIdx.x].z - 1 + threadIdx.z;
|
|
|
|
|
|
|
|
__shared__ float fh_vals[3][3][3];
|
|
|
|
__shared__ KeyPoint_GPU p;
|
|
|
|
|
|
|
|
fh_vals[threadIdx.z][threadIdx.y][threadIdx.x] = hessianBuffer.ptr(c_y_size * hidx_z + hidx_y)[hidx_x];
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (threadIdx.x == 0 && threadIdx.y == 0 && threadIdx.z == 0)
|
|
|
|
{
|
|
|
|
__shared__ float H[3][3];
|
|
|
|
|
|
|
|
//dxx
|
|
|
|
H[0][0] = fh_vals[MID_IDX ][MID_IDX + 1][MID_IDX ]
|
|
|
|
- 2.0f*fh_vals[MID_IDX ][MID_IDX ][MID_IDX ]
|
|
|
|
+ fh_vals[MID_IDX ][MID_IDX - 1][MID_IDX ];
|
|
|
|
|
|
|
|
//dyy
|
|
|
|
H[1][1] = fh_vals[MID_IDX ][MID_IDX ][MID_IDX + 1]
|
|
|
|
- 2.0f*fh_vals[MID_IDX ][MID_IDX ][MID_IDX ]
|
|
|
|
+ fh_vals[MID_IDX ][MID_IDX ][MID_IDX - 1];
|
|
|
|
|
|
|
|
//dss
|
|
|
|
H[2][2] = fh_vals[MID_IDX + 1][MID_IDX ][MID_IDX ]
|
|
|
|
- 2.0f*fh_vals[MID_IDX ][MID_IDX ][MID_IDX ]
|
|
|
|
+ fh_vals[MID_IDX - 1][MID_IDX ][MID_IDX ];
|
|
|
|
|
|
|
|
//dxy
|
|
|
|
H[0][1]= 0.25f*
|
|
|
|
(fh_vals[MID_IDX ][MID_IDX + 1][MID_IDX + 1] -
|
|
|
|
fh_vals[MID_IDX ][MID_IDX - 1][MID_IDX + 1] -
|
|
|
|
fh_vals[MID_IDX ][MID_IDX + 1][MID_IDX - 1] +
|
|
|
|
fh_vals[MID_IDX ][MID_IDX - 1][MID_IDX - 1]);
|
|
|
|
|
|
|
|
//dxs
|
|
|
|
H[0][2]= 0.25f*
|
|
|
|
(fh_vals[MID_IDX + 1][MID_IDX + 1][MID_IDX ] -
|
|
|
|
fh_vals[MID_IDX + 1][MID_IDX - 1][MID_IDX ] -
|
|
|
|
fh_vals[MID_IDX - 1][MID_IDX + 1][MID_IDX ] +
|
|
|
|
fh_vals[MID_IDX - 1][MID_IDX - 1][MID_IDX ]);
|
|
|
|
|
|
|
|
//dys
|
|
|
|
H[1][2]= 0.25f*
|
|
|
|
(fh_vals[MID_IDX + 1][MID_IDX ][MID_IDX + 1] -
|
|
|
|
fh_vals[MID_IDX + 1][MID_IDX ][MID_IDX - 1] -
|
|
|
|
fh_vals[MID_IDX - 1][MID_IDX ][MID_IDX + 1] +
|
|
|
|
fh_vals[MID_IDX - 1][MID_IDX ][MID_IDX - 1]);
|
|
|
|
|
|
|
|
//dyx = dxy
|
|
|
|
H[1][0] = H[0][1];
|
|
|
|
|
|
|
|
//dsx = dxs
|
|
|
|
H[2][0] = H[0][2];
|
|
|
|
|
|
|
|
//dsy = dys
|
|
|
|
H[2][1] = H[1][2];
|
|
|
|
|
|
|
|
__shared__ float dD[3];
|
|
|
|
|
|
|
|
//dx
|
|
|
|
dD[0] = 0.5f*(fh_vals[MID_IDX ][MID_IDX + 1][MID_IDX ] -
|
|
|
|
fh_vals[MID_IDX ][MID_IDX - 1][MID_IDX ]);
|
|
|
|
//dy
|
|
|
|
dD[1] = 0.5f*(fh_vals[MID_IDX ][MID_IDX ][MID_IDX + 1] -
|
|
|
|
fh_vals[MID_IDX ][MID_IDX ][MID_IDX - 1]);
|
|
|
|
//ds
|
|
|
|
dD[2] = 0.5f*(fh_vals[MID_IDX + 1][MID_IDX ][MID_IDX ] -
|
|
|
|
fh_vals[MID_IDX - 1][MID_IDX ][MID_IDX ]);
|
|
|
|
|
|
|
|
__shared__ float invdet;
|
|
|
|
invdet = 1.f /
|
|
|
|
(
|
|
|
|
H[0][0]*H[1][1]*H[2][2]
|
|
|
|
+ H[0][1]*H[1][2]*H[2][0]
|
|
|
|
+ H[0][2]*H[1][0]*H[2][1]
|
|
|
|
- H[0][0]*H[1][2]*H[2][1]
|
|
|
|
- H[0][1]*H[1][0]*H[2][2]
|
|
|
|
- H[0][2]*H[1][1]*H[2][0]
|
|
|
|
);
|
|
|
|
|
|
|
|
// // 1-based entries of a 3x3 inverse
|
|
|
|
// /* [ |a22 a23| |a12 a13| |a12 a13|] */
|
|
|
|
// /* [ |a32 a33| -|a32 a33| |a22 a23|] */
|
|
|
|
// /* [ ] */
|
|
|
|
// /* [ |a21 a23| |a11 a13| |a11 a13|] */
|
|
|
|
// /* A^(-1) = [-|a31 a33| |a31 a33| -|a21 a23|] / d */
|
|
|
|
// /* [ ] */
|
|
|
|
// /* [ |a21 a22| |a11 a12| |a11 a12|] */
|
|
|
|
// /* [ |a31 a32| -|a31 a32| |a21 a22|] */
|
|
|
|
|
|
|
|
__shared__ float Hinv[3][3];
|
|
|
|
Hinv[0][0] = invdet*(H[1][1]*H[2][2]-H[1][2]*H[2][1]);
|
|
|
|
Hinv[0][1] = -invdet*(H[0][1]*H[2][2]-H[0][2]*H[2][1]);
|
|
|
|
Hinv[0][2] = invdet*(H[0][1]*H[1][2]-H[0][2]*H[1][1]);
|
|
|
|
|
|
|
|
Hinv[1][0] = -invdet*(H[1][0]*H[2][2]-H[1][2]*H[2][0]);
|
|
|
|
Hinv[1][1] = invdet*(H[0][0]*H[2][2]-H[0][2]*H[2][0]);
|
|
|
|
Hinv[1][2] = -invdet*(H[0][0]*H[1][2]-H[0][2]*H[1][0]);
|
|
|
|
|
|
|
|
Hinv[2][0] = invdet*(H[1][0]*H[2][1]-H[1][1]*H[2][0]);
|
|
|
|
Hinv[2][1] = -invdet*(H[0][0]*H[2][1]-H[0][1]*H[2][0]);
|
|
|
|
Hinv[2][2] = invdet*(H[0][0]*H[1][1]-H[0][1]*H[1][0]);
|
|
|
|
|
|
|
|
__shared__ float x[3];
|
|
|
|
|
|
|
|
x[0] = -(Hinv[0][0]*(dD[0]) + Hinv[0][1]*(dD[1]) + Hinv[0][2]*(dD[2]));
|
|
|
|
x[1] = -(Hinv[1][0]*(dD[0]) + Hinv[1][1]*(dD[1]) + Hinv[1][2]*(dD[2]));
|
|
|
|
x[2] = -(Hinv[2][0]*(dD[0]) + Hinv[2][1]*(dD[1]) + Hinv[2][2]*(dD[2]));
|
|
|
|
|
|
|
|
if (fabs(x[0]) < 1.f && fabs(x[1]) < 1.f && fabs(x[2]) < 1.f)
|
|
|
|
{
|
|
|
|
// if the step is within the interpolation region, perform it
|
|
|
|
|
|
|
|
// Get a new feature index.
|
|
|
|
unsigned int i = atomicInc(featureCounter, (unsigned int)-1);
|
|
|
|
|
|
|
|
if (i < c_max_features)
|
|
|
|
{
|
|
|
|
p.x = ((float)maxPosBuffer[blockIdx.x].x + x[1]) * (float)c_step + c_border;
|
|
|
|
p.y = ((float)maxPosBuffer[blockIdx.x].y + x[0]) * (float)c_step + c_border;
|
|
|
|
|
|
|
|
if (x[2] > 0)
|
|
|
|
{
|
|
|
|
float a = calcScale(maxPosBuffer[blockIdx.x].z);
|
|
|
|
float b = calcScale(maxPosBuffer[blockIdx.x].z + 1);
|
|
|
|
|
|
|
|
p.size = (1.f - x[2]) * a + x[2] * b;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
float a = calcScale(maxPosBuffer[blockIdx.x].z);
|
|
|
|
float b = calcScale(maxPosBuffer[blockIdx.x].z - 1);
|
|
|
|
|
|
|
|
p.size = (1.f + x[2]) * a - x[2] * b;
|
|
|
|
}
|
|
|
|
|
|
|
|
p.octave = c_octave;
|
|
|
|
|
|
|
|
p.response = fh_vals[MID_IDX][MID_IDX][MID_IDX];
|
|
|
|
|
|
|
|
// Should we split up this transfer over many threads?
|
|
|
|
featuresBuffer[i] = p;
|
|
|
|
}
|
|
|
|
} // If the subpixel interpolation worked
|
|
|
|
} // If this is thread 0.
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
#undef MID_IDX
|
|
|
|
|
|
|
|
void fh_interp_extremum_gpu(PtrStepf hessianBuffer, const int4* maxPosBuffer, unsigned int maxCounter,
|
|
|
|
KeyPoint_GPU* featuresBuffer, unsigned int& featureCounter)
|
|
|
|
{
|
|
|
|
dim3 threads;
|
|
|
|
threads.x = 3;
|
|
|
|
threads.y = 3;
|
|
|
|
threads.z = 3;
|
|
|
|
|
|
|
|
dim3 grid;
|
|
|
|
grid.x = maxCounter;
|
|
|
|
grid.y = 1;
|
|
|
|
grid.z = 1;
|
|
|
|
|
|
|
|
DeviceReference<unsigned int> featureCounterWrapper(featureCounter);
|
|
|
|
|
|
|
|
fh_interp_extremum<<<grid, threads>>>(hessianBuffer, maxPosBuffer, featuresBuffer, featureCounterWrapper);
|
|
|
|
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// Orientation
|
|
|
|
|
|
|
|
// precomputed values for a Gaussian with a standard deviation of 2
|
|
|
|
__constant__ float c_gauss1D[13] =
|
|
|
|
{
|
|
|
|
0.002215924206f, 0.008764150247f, 0.026995483257f, 0.064758797833f,
|
|
|
|
0.120985362260f, 0.176032663382f, 0.199471140201f, 0.176032663382f,
|
|
|
|
0.120985362260f, 0.064758797833f, 0.026995483257f, 0.008764150247f,
|
|
|
|
0.002215924206f
|
|
|
|
};
|
|
|
|
|
|
|
|
__global__ void find_orientation(KeyPoint_GPU* features)
|
|
|
|
{
|
|
|
|
int tid = threadIdx.y * 17 + threadIdx.x;
|
|
|
|
int tid2 = numeric_limits_gpu<int>::max();
|
|
|
|
|
|
|
|
if (threadIdx.x < 13 && threadIdx.y < 13)
|
|
|
|
{
|
|
|
|
tid2 = threadIdx.y * 13 + threadIdx.x;
|
|
|
|
}
|
|
|
|
|
|
|
|
__shared__ float texLookups[17][17];
|
|
|
|
|
|
|
|
__shared__ float Edx[13*13];
|
|
|
|
__shared__ float Edy[13*13];
|
|
|
|
__shared__ float xys[3];
|
|
|
|
|
|
|
|
// Read my x, y, size.
|
|
|
|
if (tid < 3)
|
|
|
|
{
|
|
|
|
xys[tid] = ((float*)(&features[blockIdx.x]))[tid];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// Read all texture locations into memory
|
|
|
|
// Maybe I should use __mul24 here?
|
|
|
|
texLookups[threadIdx.x][threadIdx.y] = tex2D(sumTex, xys[SF_X] + ((int)threadIdx.x - 8) * xys[SF_SIZE],
|
|
|
|
xys[SF_Y] + ((int)threadIdx.y - 8) * xys[SF_SIZE]);
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
float dx = 0.f;
|
|
|
|
float dy = 0.f;
|
|
|
|
|
|
|
|
// Computes lookups for all points in a 13x13 lattice.
|
|
|
|
// - SURF says to only use a circle, but the branching logic would slow it down
|
|
|
|
// - Gaussian weighting should reduce the effects of the outer points anyway
|
|
|
|
if (tid2 < 169)
|
|
|
|
{
|
|
|
|
dx -= texLookups[threadIdx.x ][threadIdx.y ];
|
|
|
|
dx += 2.f*texLookups[threadIdx.x + 2][threadIdx.y ];
|
|
|
|
dx -= texLookups[threadIdx.x + 4][threadIdx.y ];
|
|
|
|
dx += texLookups[threadIdx.x ][threadIdx.y + 4];
|
|
|
|
dx -= 2.f*texLookups[threadIdx.x + 2][threadIdx.y + 4];
|
|
|
|
dx += texLookups[threadIdx.x + 4][threadIdx.y + 4];
|
|
|
|
|
|
|
|
dy -= texLookups[threadIdx.x ][threadIdx.y ];
|
|
|
|
dy += 2.f*texLookups[threadIdx.x ][threadIdx.y + 2];
|
|
|
|
dy -= texLookups[threadIdx.x ][threadIdx.y + 4];
|
|
|
|
dy += texLookups[threadIdx.x + 4][threadIdx.y ];
|
|
|
|
dy -= 2.f*texLookups[threadIdx.x + 4][threadIdx.y + 2];
|
|
|
|
dy += texLookups[threadIdx.x + 4][threadIdx.y + 4];
|
|
|
|
|
|
|
|
float g = c_gauss1D[threadIdx.x] * c_gauss1D[threadIdx.y];
|
|
|
|
|
|
|
|
Edx[tid2] = dx * g;
|
|
|
|
Edy[tid2] = dy * g;
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// This is a scan to get the summed dx, dy values.
|
|
|
|
// Gets 128-168
|
|
|
|
if (tid < 41)
|
|
|
|
{
|
|
|
|
Edx[tid] += Edx[tid + 128];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (tid < 64)
|
|
|
|
{
|
|
|
|
Edx[tid] += Edx[tid + 64];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (tid < 32)
|
|
|
|
{
|
|
|
|
volatile float* smem = Edx;
|
|
|
|
|
|
|
|
smem[tid] += smem[tid + 32];
|
|
|
|
smem[tid] += smem[tid + 16];
|
|
|
|
smem[tid] += smem[tid + 8];
|
|
|
|
smem[tid] += smem[tid + 4];
|
|
|
|
smem[tid] += smem[tid + 2];
|
|
|
|
smem[tid] += smem[tid + 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Gets 128-168
|
|
|
|
if (tid < 41)
|
|
|
|
{
|
|
|
|
Edy[tid] += Edy[tid + 128];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (tid < 64)
|
|
|
|
{
|
|
|
|
Edy[tid] += Edy[tid + 64];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (tid < 32)
|
|
|
|
{
|
|
|
|
volatile float* smem = Edy;
|
|
|
|
|
|
|
|
smem[tid] += smem[tid + 32];
|
|
|
|
smem[tid] += smem[tid + 16];
|
|
|
|
smem[tid] += smem[tid + 8];
|
|
|
|
smem[tid] += smem[tid + 4];
|
|
|
|
smem[tid] += smem[tid + 2];
|
|
|
|
smem[tid] += smem[tid + 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Thread 0 saves back the result.
|
|
|
|
if (tid == 0)
|
|
|
|
{
|
|
|
|
features[blockIdx.x].angle = -atan2(Edy[0], Edx[0]) * (180.0f / CV_PI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void find_orientation_gpu(KeyPoint_GPU* features, int nFeatures)
|
|
|
|
{
|
|
|
|
dim3 threads;
|
|
|
|
threads.x = 17;
|
|
|
|
threads.y = 17;
|
|
|
|
|
|
|
|
dim3 grid;
|
|
|
|
grid.x = nFeatures;
|
|
|
|
grid.y = 1;
|
|
|
|
grid.z = 1;
|
|
|
|
|
|
|
|
find_orientation<<<grid, threads>>>(features);
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// Descriptors
|
|
|
|
|
|
|
|
// precomputed values for a Gaussian with a standard deviation of 3.3
|
|
|
|
// - it appears SURF uses a different value, but not sure what it is
|
|
|
|
__constant__ float c_3p3gauss1D[20] =
|
|
|
|
{
|
|
|
|
0.001917811039f, 0.004382549939f, 0.009136246641f, 0.017375153068f, 0.030144587513f,
|
|
|
|
0.047710056854f, 0.068885910797f, 0.090734146446f, 0.109026229640f, 0.119511889092f,
|
|
|
|
0.119511889092f, 0.109026229640f, 0.090734146446f, 0.068885910797f, 0.047710056854f,
|
|
|
|
0.030144587513f, 0.017375153068f, 0.009136246641f, 0.004382549939f, 0.001917811039f
|
|
|
|
};
|
|
|
|
|
|
|
|
template <int BLOCK_DIM_X>
|
|
|
|
__global__ void normalize_descriptors(PtrStepf descriptors)
|
|
|
|
{
|
|
|
|
// no need for thread ID
|
|
|
|
float* descriptor_base = descriptors.ptr(blockIdx.x);
|
|
|
|
|
|
|
|
// read in the unnormalized descriptor values (squared)
|
|
|
|
__shared__ float sqDesc[BLOCK_DIM_X];
|
|
|
|
const float lookup = descriptor_base[threadIdx.x];
|
|
|
|
sqDesc[threadIdx.x] = lookup * lookup;
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (BLOCK_DIM_X >= 128)
|
|
|
|
{
|
|
|
|
if (threadIdx.x < 64)
|
|
|
|
sqDesc[threadIdx.x] += sqDesc[threadIdx.x + 64];
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
// reduction to get total
|
|
|
|
if (threadIdx.x < 32)
|
|
|
|
{
|
|
|
|
volatile float* smem = sqDesc;
|
|
|
|
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 32];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 16];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 8];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 4];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 2];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// compute length (square root)
|
|
|
|
__shared__ float len;
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
{
|
|
|
|
len = sqrtf(sqDesc[0]);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// normalize and store in output
|
|
|
|
descriptor_base[threadIdx.x] = lookup / len;
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ void calc_dx_dy(float sdx[4][4][25], float sdy[4][4][25], const KeyPoint_GPU* features)
|
|
|
|
{
|
|
|
|
// get the interest point parameters (x, y, size, response, angle)
|
|
|
|
__shared__ float ipt[5];
|
|
|
|
if (threadIdx.x < 5 && threadIdx.y == 0 && threadIdx.z == 0)
|
|
|
|
{
|
|
|
|
ipt[threadIdx.x] = ((float*)(&features[blockIdx.x]))[threadIdx.x];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
float sin_theta, cos_theta;
|
|
|
|
sincosf(ipt[SF_ANGLE] * (CV_PI / 180.0f), &sin_theta, &cos_theta);
|
|
|
|
|
|
|
|
// Compute sampling points
|
|
|
|
// since grids are 2D, need to compute xBlock and yBlock indices
|
|
|
|
const int xIndex = threadIdx.y * 5 + threadIdx.x % 5;
|
|
|
|
const int yIndex = threadIdx.z * 5 + threadIdx.x / 5;
|
|
|
|
|
|
|
|
// Compute rotated sampling points
|
|
|
|
// (clockwise rotation since we are rotating the lattice)
|
|
|
|
// (subtract 9.5f to start sampling at the top left of the lattice, 0.5f is to space points out properly - there is no center pixel)
|
|
|
|
const float sample_x = ipt[SF_X] + (cos_theta * ((float) (xIndex-9.5f)) * ipt[SF_SIZE]
|
|
|
|
+ sin_theta * ((float) (yIndex-9.5f)) * ipt[SF_SIZE]);
|
|
|
|
const float sample_y = ipt[SF_Y] + (-sin_theta * ((float) (xIndex-9.5f)) * ipt[SF_SIZE]
|
|
|
|
+ cos_theta * ((float) (yIndex-9.5f)) * ipt[SF_SIZE]);
|
|
|
|
|
|
|
|
// gather integral image lookups for Haar wavelets at each point (some lookups are shared between dx and dy)
|
|
|
|
// a b c
|
|
|
|
// d f
|
|
|
|
// g h i
|
|
|
|
|
|
|
|
const float a = tex2D(sumTex, sample_x - ipt[SF_SIZE], sample_y - ipt[SF_SIZE]);
|
|
|
|
const float b = tex2D(sumTex, sample_x, sample_y - ipt[SF_SIZE]);
|
|
|
|
const float c = tex2D(sumTex, sample_x + ipt[SF_SIZE], sample_y - ipt[SF_SIZE]);
|
|
|
|
const float d = tex2D(sumTex, sample_x - ipt[SF_SIZE], sample_y);
|
|
|
|
const float f = tex2D(sumTex, sample_x + ipt[SF_SIZE], sample_y);
|
|
|
|
const float g = tex2D(sumTex, sample_x - ipt[SF_SIZE], sample_y + ipt[SF_SIZE]);
|
|
|
|
const float h = tex2D(sumTex, sample_x, sample_y + ipt[SF_SIZE]);
|
|
|
|
const float i = tex2D(sumTex, sample_x + ipt[SF_SIZE], sample_y + ipt[SF_SIZE]);
|
|
|
|
|
|
|
|
// compute axis-aligned HaarX, HaarY
|
|
|
|
// (could group the additions together into multiplications)
|
|
|
|
const float gauss = c_3p3gauss1D[xIndex] * c_3p3gauss1D[yIndex]; // separable because independent (circular)
|
|
|
|
const float aa_dx = gauss * (-(a-b-g+h) + (b-c-h+i)); // unrotated dx
|
|
|
|
const float aa_dy = gauss * (-(a-c-d+f) + (d-f-g+i)); // unrotated dy
|
|
|
|
|
|
|
|
// rotate responses (store all dxs then all dys)
|
|
|
|
// - counterclockwise rotation to rotate back to zero orientation
|
|
|
|
sdx[threadIdx.z][threadIdx.y][threadIdx.x] = aa_dx * cos_theta - aa_dy * sin_theta; // rotated dx
|
|
|
|
sdy[threadIdx.z][threadIdx.y][threadIdx.x] = aa_dx * sin_theta + aa_dy * cos_theta; // rotated dy
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ void reduce_sum(float sdata1[4][4][25], float sdata2[4][4][25], float sdata3[4][4][25],
|
|
|
|
float sdata4[4][4][25])
|
|
|
|
{
|
|
|
|
// first step is to reduce from 25 to 16
|
|
|
|
if (threadIdx.x < 9) // use 9 threads
|
|
|
|
{
|
|
|
|
sdata1[threadIdx.z][threadIdx.y][threadIdx.x] += sdata1[threadIdx.z][threadIdx.y][threadIdx.x + 16];
|
|
|
|
sdata2[threadIdx.z][threadIdx.y][threadIdx.x] += sdata2[threadIdx.z][threadIdx.y][threadIdx.x + 16];
|
|
|
|
sdata3[threadIdx.z][threadIdx.y][threadIdx.x] += sdata3[threadIdx.z][threadIdx.y][threadIdx.x + 16];
|
|
|
|
sdata4[threadIdx.z][threadIdx.y][threadIdx.x] += sdata4[threadIdx.z][threadIdx.y][threadIdx.x + 16];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// sum (reduce) from 16 to 1 (unrolled - aligned to a half-warp)
|
|
|
|
if (threadIdx.x < 16)
|
|
|
|
{
|
|
|
|
volatile float* smem = sdata1[threadIdx.z][threadIdx.y];
|
|
|
|
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 8];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 4];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 2];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 1];
|
|
|
|
|
|
|
|
smem = sdata2[threadIdx.z][threadIdx.y];
|
|
|
|
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 8];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 4];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 2];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 1];
|
|
|
|
|
|
|
|
smem = sdata3[threadIdx.z][threadIdx.y];
|
|
|
|
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 8];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 4];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 2];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 1];
|
|
|
|
|
|
|
|
smem = sdata4[threadIdx.z][threadIdx.y];
|
|
|
|
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 8];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 4];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 2];
|
|
|
|
smem[threadIdx.x] += smem[threadIdx.x + 1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Spawn 16 blocks per interest point
|
|
|
|
// - computes unnormalized 64 dimensional descriptor, puts it into d_descriptors in the correct location
|
|
|
|
__global__ void compute_descriptors64(PtrStepf descriptors, const KeyPoint_GPU* features)
|
|
|
|
{
|
|
|
|
// 2 floats (dx, dy) for each thread (5x5 sample points in each sub-region)
|
|
|
|
__shared__ float sdx[4][4][25];
|
|
|
|
__shared__ float sdy[4][4][25];
|
|
|
|
|
|
|
|
calc_dx_dy(sdx, sdy, features);
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
__shared__ float sdxabs[4][4][25];
|
|
|
|
__shared__ float sdyabs[4][4][25];
|
|
|
|
|
|
|
|
sdxabs[threadIdx.z][threadIdx.y][threadIdx.x] = fabs(sdx[threadIdx.z][threadIdx.y][threadIdx.x]); // |dx| array
|
|
|
|
sdyabs[threadIdx.z][threadIdx.y][threadIdx.x] = fabs(sdy[threadIdx.z][threadIdx.y][threadIdx.x]); // |dy| array
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
reduce_sum(sdx, sdy, sdxabs, sdyabs);
|
|
|
|
|
|
|
|
float* descriptors_block = descriptors.ptr(blockIdx.x) + threadIdx.z * 16 + threadIdx.y * 4;
|
|
|
|
|
|
|
|
// write dx, dy, |dx|, |dy|
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
{
|
|
|
|
descriptors_block[0] = sdx[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[1] = sdy[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[2] = sdxabs[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[3] = sdyabs[threadIdx.z][threadIdx.y][0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Spawn 16 blocks per interest point
|
|
|
|
// - computes unnormalized 128 dimensional descriptor, puts it into d_descriptors in the correct location
|
|
|
|
__global__ void compute_descriptors128(PtrStepf descriptors, const KeyPoint_GPU* features)
|
|
|
|
{
|
|
|
|
// 2 floats (dx,dy) for each thread (5x5 sample points in each sub-region)
|
|
|
|
__shared__ float sdx[4][4][25];
|
|
|
|
__shared__ float sdy[4][4][25];
|
|
|
|
|
|
|
|
calc_dx_dy(sdx, sdy, features);
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
// sum (reduce) 5x5 area response
|
|
|
|
__shared__ float sd1[4][4][25];
|
|
|
|
__shared__ float sd2[4][4][25];
|
|
|
|
__shared__ float sdabs1[4][4][25];
|
|
|
|
__shared__ float sdabs2[4][4][25];
|
|
|
|
|
|
|
|
if (sdy[threadIdx.z][threadIdx.y][threadIdx.x] >= 0)
|
|
|
|
{
|
|
|
|
sd1[threadIdx.z][threadIdx.y][threadIdx.x] = sdx[threadIdx.z][threadIdx.y][threadIdx.x];
|
|
|
|
sdabs1[threadIdx.z][threadIdx.y][threadIdx.x] = fabs(sdx[threadIdx.z][threadIdx.y][threadIdx.x]);
|
|
|
|
sd2[threadIdx.z][threadIdx.y][threadIdx.x] = 0;
|
|
|
|
sdabs2[threadIdx.z][threadIdx.y][threadIdx.x] = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sd1[threadIdx.z][threadIdx.y][threadIdx.x] = 0;
|
|
|
|
sdabs1[threadIdx.z][threadIdx.y][threadIdx.x] = 0;
|
|
|
|
sd2[threadIdx.z][threadIdx.y][threadIdx.x] = sdx[threadIdx.z][threadIdx.y][threadIdx.x];
|
|
|
|
sdabs2[threadIdx.z][threadIdx.y][threadIdx.x] = fabs(sdx[threadIdx.z][threadIdx.y][threadIdx.x]);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
reduce_sum(sd1, sd2, sdabs1, sdabs2);
|
|
|
|
|
|
|
|
float* descriptors_block = descriptors.ptr(blockIdx.x) + threadIdx.z * 32 + threadIdx.y * 8;
|
|
|
|
|
|
|
|
// write dx (dy >= 0), |dx| (dy >= 0), dx (dy < 0), |dx| (dy < 0)
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
{
|
|
|
|
descriptors_block[0] = sd1[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[1] = sdabs1[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[2] = sd2[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[3] = sdabs2[threadIdx.z][threadIdx.y][0];
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (sdx[threadIdx.z][threadIdx.y][threadIdx.x] >= 0)
|
|
|
|
{
|
|
|
|
sd1[threadIdx.z][threadIdx.y][threadIdx.x] = sdy[threadIdx.z][threadIdx.y][threadIdx.x];
|
|
|
|
sdabs1[threadIdx.z][threadIdx.y][threadIdx.x] = fabs(sdy[threadIdx.z][threadIdx.y][threadIdx.x]);
|
|
|
|
sd2[threadIdx.z][threadIdx.y][threadIdx.x] = 0;
|
|
|
|
sdabs2[threadIdx.z][threadIdx.y][threadIdx.x] = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
sd1[threadIdx.z][threadIdx.y][threadIdx.x] = 0;
|
|
|
|
sdabs1[threadIdx.z][threadIdx.y][threadIdx.x] = 0;
|
|
|
|
sd2[threadIdx.z][threadIdx.y][threadIdx.x] = sdy[threadIdx.z][threadIdx.y][threadIdx.x];
|
|
|
|
sdabs2[threadIdx.z][threadIdx.y][threadIdx.x] = fabs(sdy[threadIdx.z][threadIdx.y][threadIdx.x]);
|
|
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
reduce_sum(sd1, sd2, sdabs1, sdabs2);
|
|
|
|
|
|
|
|
// write dy (dx >= 0), |dy| (dx >= 0), dy (dx < 0), |dy| (dx < 0)
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
{
|
|
|
|
descriptors_block[4] = sd1[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[5] = sdabs1[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[6] = sd2[threadIdx.z][threadIdx.y][0];
|
|
|
|
descriptors_block[7] = sdabs2[threadIdx.z][threadIdx.y][0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute_descriptors_gpu(const DevMem2Df& descriptors, const KeyPoint_GPU* features, int nFeatures)
|
|
|
|
{
|
|
|
|
// compute unnormalized descriptors, then normalize them - odd indexing since grid must be 2D
|
|
|
|
|
|
|
|
if (descriptors.cols == 64)
|
|
|
|
{
|
|
|
|
compute_descriptors64<<<dim3(nFeatures, 1, 1), dim3(25, 4, 4)>>>(descriptors, features);
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
|
|
|
|
normalize_descriptors<64><<<dim3(nFeatures, 1, 1), dim3(64, 1, 1)>>>(descriptors);
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
compute_descriptors128<<<dim3(nFeatures, 1, 1), dim3(25, 4, 4)>>>(descriptors, features);
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
|
|
|
|
normalize_descriptors<128><<<dim3(nFeatures, 1, 1), dim3(128, 1, 1)>>>(descriptors);
|
|
|
|
cudaSafeCall( cudaThreadSynchronize() );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}}}
|