2023-06-15 03:21:38 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (c) 2020-2021 darkliang wangberlinT Certseeds
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include <opencv2/objdetect/barcode.hpp>
|
|
|
|
#include <opencv2/core/utils/filesystem.hpp>
|
|
|
|
#include "barcode_decoder/ean13_decoder.hpp"
|
|
|
|
#include "barcode_decoder/ean8_decoder.hpp"
|
|
|
|
#include "barcode_detector/bardetect.hpp"
|
|
|
|
#include "barcode_decoder/common/super_scale.hpp"
|
|
|
|
#include "barcode_decoder/common/utils.hpp"
|
|
|
|
#include "graphical_code_detector_impl.hpp"
|
|
|
|
|
|
|
|
using std::string;
|
|
|
|
using std::vector;
|
|
|
|
using std::make_shared;
|
|
|
|
using std::array;
|
|
|
|
using std::shared_ptr;
|
|
|
|
using std::dynamic_pointer_cast;
|
|
|
|
|
|
|
|
namespace cv {
|
|
|
|
namespace barcode {
|
|
|
|
|
|
|
|
//==================================================================================================
|
|
|
|
|
|
|
|
static bool checkBarInputImage(InputArray img, Mat &gray)
|
|
|
|
{
|
|
|
|
CV_Assert(!img.empty());
|
|
|
|
CV_CheckDepthEQ(img.depth(), CV_8U, "");
|
|
|
|
if (img.cols() <= 40 || img.rows() <= 40)
|
|
|
|
{
|
|
|
|
return false; // image data is not enough for providing reliable results
|
|
|
|
}
|
|
|
|
int incn = img.channels();
|
|
|
|
CV_Check(incn, incn == 1 || incn == 3 || incn == 4, "");
|
|
|
|
if (incn == 3 || incn == 4)
|
|
|
|
{
|
|
|
|
cvtColor(img, gray, COLOR_BGR2GRAY);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
gray = img.getMat();
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void updatePointsResult(OutputArray points_, const vector<Point2f> &points)
|
|
|
|
{
|
|
|
|
if (points_.needed())
|
|
|
|
{
|
|
|
|
int N = int(points.size() / 4);
|
|
|
|
if (N > 0)
|
|
|
|
{
|
|
|
|
Mat m_p(N, 4, CV_32FC2, (void *) &points[0]);
|
|
|
|
int points_type = points_.fixedType() ? points_.type() : CV_32FC2;
|
|
|
|
m_p.reshape(2, points_.rows()).convertTo(points_, points_type); // Mat layout: N x 4 x 2cn
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
points_.release();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline const array<shared_ptr<AbsDecoder>, 2> &getDecoders()
|
|
|
|
{
|
|
|
|
//indicate Decoder
|
|
|
|
static const array<shared_ptr<AbsDecoder>, 2> decoders{
|
|
|
|
shared_ptr<AbsDecoder>(new Ean13Decoder()), shared_ptr<AbsDecoder>(new Ean8Decoder())};
|
|
|
|
return decoders;
|
|
|
|
}
|
|
|
|
|
|
|
|
//==================================================================================================
|
|
|
|
|
|
|
|
class BarDecode
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void init(const vector<Mat> &bar_imgs_);
|
|
|
|
|
|
|
|
const vector<Result> &getDecodeInformation()
|
|
|
|
{ return result_info; }
|
|
|
|
|
|
|
|
bool decodeMultiplyProcess();
|
|
|
|
|
|
|
|
private:
|
|
|
|
vector<Mat> bar_imgs;
|
|
|
|
vector<Result> result_info;
|
|
|
|
};
|
|
|
|
|
|
|
|
void BarDecode::init(const vector<Mat> &bar_imgs_)
|
|
|
|
{
|
|
|
|
bar_imgs = bar_imgs_;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BarDecode::decodeMultiplyProcess()
|
|
|
|
{
|
|
|
|
static float constexpr THRESHOLD_CONF = 0.6f;
|
|
|
|
result_info.clear();
|
|
|
|
result_info.resize(bar_imgs.size());
|
|
|
|
parallel_for_(Range(0, int(bar_imgs.size())), [&](const Range &range) {
|
|
|
|
for (int i = range.start; i < range.end; i++)
|
|
|
|
{
|
|
|
|
Mat bin_bar;
|
|
|
|
Result max_res;
|
|
|
|
float max_conf = -1.f;
|
|
|
|
bool decoded = false;
|
|
|
|
for (const auto &decoder:getDecoders())
|
|
|
|
{
|
|
|
|
if (decoded)
|
|
|
|
{ break; }
|
|
|
|
for (const auto binary_type : binary_types)
|
|
|
|
{
|
|
|
|
binarize(bar_imgs[i], bin_bar, binary_type);
|
|
|
|
auto cur_res = decoder->decodeROI(bin_bar);
|
|
|
|
if (cur_res.second > max_conf)
|
|
|
|
{
|
|
|
|
max_res = cur_res.first;
|
|
|
|
max_conf = cur_res.second;
|
|
|
|
if (max_conf > THRESHOLD_CONF)
|
|
|
|
{
|
|
|
|
// code decoded
|
|
|
|
decoded = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} //binary types
|
|
|
|
} //decoder types
|
|
|
|
|
|
|
|
result_info[i] = max_res;
|
|
|
|
}
|
|
|
|
});
|
|
|
|
return !result_info.empty();
|
|
|
|
}
|
|
|
|
|
|
|
|
//==================================================================================================
|
|
|
|
// Private class definition and implementation (pimpl)
|
|
|
|
|
|
|
|
struct BarcodeImpl : public GraphicalCodeDetector::Impl
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
shared_ptr<SuperScale> sr;
|
|
|
|
bool use_nn_sr = false;
|
2024-05-20 14:53:22 +08:00
|
|
|
double detectorThrDownSample = 512.f;
|
|
|
|
vector<float> detectorWindowSizes = {0.01f, 0.03f, 0.06f, 0.08f};
|
|
|
|
double detectorThrGradMagnitude = 64.f;
|
2023-06-15 03:21:38 +08:00
|
|
|
|
|
|
|
public:
|
|
|
|
//=================
|
|
|
|
// own methods
|
2024-05-20 14:53:22 +08:00
|
|
|
BarcodeImpl() {}
|
|
|
|
|
2023-06-15 03:21:38 +08:00
|
|
|
vector<Mat> initDecode(const Mat &src, const vector<vector<Point2f>> &points) const;
|
|
|
|
bool decodeWithType(InputArray img,
|
|
|
|
InputArray points,
|
|
|
|
vector<string> &decoded_info,
|
|
|
|
vector<string> &decoded_type) const;
|
|
|
|
bool detectAndDecodeWithType(InputArray img,
|
|
|
|
vector<string> &decoded_info,
|
|
|
|
vector<string> &decoded_type,
|
|
|
|
OutputArray points_) const;
|
|
|
|
|
|
|
|
//=================
|
|
|
|
// implement interface
|
|
|
|
~BarcodeImpl() CV_OVERRIDE {}
|
|
|
|
bool detect(InputArray img, OutputArray points) const CV_OVERRIDE;
|
|
|
|
string decode(InputArray img, InputArray points, OutputArray straight_code) const CV_OVERRIDE;
|
|
|
|
string detectAndDecode(InputArray img, OutputArray points, OutputArray straight_code) const CV_OVERRIDE;
|
|
|
|
bool detectMulti(InputArray img, OutputArray points) const CV_OVERRIDE;
|
|
|
|
bool decodeMulti(InputArray img, InputArray points, vector<string>& decoded_info, OutputArrayOfArrays straight_code) const CV_OVERRIDE;
|
|
|
|
bool detectAndDecodeMulti(InputArray img, vector<string>& decoded_info, OutputArray points, OutputArrayOfArrays straight_code) const CV_OVERRIDE;
|
|
|
|
};
|
|
|
|
|
|
|
|
// return cropped and scaled bar img
|
|
|
|
vector<Mat> BarcodeImpl::initDecode(const Mat &src, const vector<vector<Point2f>> &points) const
|
|
|
|
{
|
|
|
|
vector<Mat> bar_imgs;
|
|
|
|
for (auto &corners : points)
|
|
|
|
{
|
|
|
|
Mat bar_img;
|
|
|
|
cropROI(src, bar_img, corners);
|
|
|
|
// sharpen(bar_img, bar_img);
|
|
|
|
// empirical settings
|
|
|
|
if (bar_img.cols < 320 || bar_img.cols > 640)
|
|
|
|
{
|
|
|
|
float scale = 560.0f / static_cast<float>(bar_img.cols);
|
|
|
|
sr->processImageScale(bar_img, bar_img, scale, use_nn_sr);
|
|
|
|
}
|
|
|
|
bar_imgs.emplace_back(bar_img);
|
|
|
|
}
|
|
|
|
return bar_imgs;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BarcodeImpl::decodeWithType(InputArray img,
|
|
|
|
InputArray points,
|
|
|
|
vector<string> &decoded_info,
|
|
|
|
vector<string> &decoded_type) const
|
|
|
|
{
|
|
|
|
Mat inarr;
|
|
|
|
if (!checkBarInputImage(img, inarr))
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
CV_Assert(points.size().width > 0);
|
|
|
|
CV_Assert((points.size().width % 4) == 0);
|
|
|
|
vector<vector<Point2f>> src_points;
|
|
|
|
Mat bar_points = points.getMat();
|
|
|
|
bar_points = bar_points.reshape(2, 1);
|
|
|
|
for (int i = 0; i < bar_points.size().width; i += 4)
|
|
|
|
{
|
|
|
|
vector<Point2f> tempMat = bar_points.colRange(i, i + 4);
|
|
|
|
if (contourArea(tempMat) > 0.0)
|
|
|
|
{
|
|
|
|
src_points.push_back(tempMat);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
CV_Assert(!src_points.empty());
|
|
|
|
vector<Mat> bar_imgs = initDecode(inarr, src_points);
|
|
|
|
BarDecode bardec;
|
|
|
|
bardec.init(bar_imgs);
|
|
|
|
bardec.decodeMultiplyProcess();
|
|
|
|
const vector<Result> info = bardec.getDecodeInformation();
|
|
|
|
decoded_info.clear();
|
|
|
|
decoded_type.clear();
|
|
|
|
bool ok = false;
|
|
|
|
for (const auto &res : info)
|
|
|
|
{
|
|
|
|
if (res.isValid())
|
|
|
|
{
|
|
|
|
ok = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
decoded_info.emplace_back(res.result);
|
|
|
|
decoded_type.emplace_back(res.typeString());
|
|
|
|
}
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BarcodeImpl::detectAndDecodeWithType(InputArray img,
|
|
|
|
vector<string> &decoded_info,
|
|
|
|
vector<string> &decoded_type,
|
|
|
|
OutputArray points_) const
|
|
|
|
{
|
|
|
|
Mat inarr;
|
|
|
|
if (!checkBarInputImage(img, inarr))
|
|
|
|
{
|
|
|
|
points_.release();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
vector<Point2f> points;
|
|
|
|
bool ok = this->detect(inarr, points);
|
|
|
|
if (!ok)
|
|
|
|
{
|
|
|
|
points_.release();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
updatePointsResult(points_, points);
|
|
|
|
decoded_info.clear();
|
|
|
|
decoded_type.clear();
|
|
|
|
ok = decodeWithType(inarr, points, decoded_info, decoded_type);
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BarcodeImpl::detect(InputArray img, OutputArray points) const
|
|
|
|
{
|
|
|
|
Mat inarr;
|
|
|
|
if (!checkBarInputImage(img, inarr))
|
|
|
|
{
|
|
|
|
points.release();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
Detect bardet;
|
2024-05-20 14:53:22 +08:00
|
|
|
bardet.init(inarr, detectorThrDownSample);
|
|
|
|
bardet.localization(detectorWindowSizes, detectorThrGradMagnitude);
|
2023-06-15 03:21:38 +08:00
|
|
|
if (!bardet.computeTransformationPoints())
|
|
|
|
{ return false; }
|
|
|
|
vector<vector<Point2f>> pnts2f = bardet.getTransformationPoints();
|
|
|
|
vector<Point2f> trans_points;
|
|
|
|
for (auto &i : pnts2f)
|
|
|
|
{
|
|
|
|
for (const auto &j : i)
|
|
|
|
{
|
|
|
|
trans_points.push_back(j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
updatePointsResult(points, trans_points);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
string BarcodeImpl::decode(InputArray img, InputArray points, OutputArray straight_code) const
|
|
|
|
{
|
|
|
|
CV_UNUSED(straight_code);
|
|
|
|
vector<string> decoded_info;
|
|
|
|
vector<string> decoded_type;
|
|
|
|
if (!decodeWithType(img, points, decoded_info, decoded_type))
|
|
|
|
return string();
|
|
|
|
if (decoded_info.size() < 1)
|
|
|
|
return string();
|
|
|
|
return decoded_info[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
string BarcodeImpl::detectAndDecode(InputArray img, OutputArray points, OutputArray straight_code) const
|
|
|
|
{
|
|
|
|
CV_UNUSED(straight_code);
|
|
|
|
vector<string> decoded_info;
|
|
|
|
vector<string> decoded_type;
|
2024-02-16 21:37:49 +08:00
|
|
|
vector<Point2f> points_;
|
2023-06-15 03:21:38 +08:00
|
|
|
if (!detectAndDecodeWithType(img, decoded_info, decoded_type, points_))
|
|
|
|
return string();
|
|
|
|
if (points_.size() < 4 || decoded_info.size() < 1)
|
|
|
|
return string();
|
|
|
|
points_.resize(4);
|
2024-02-16 21:37:49 +08:00
|
|
|
updatePointsResult(points, points_);
|
2023-06-15 03:21:38 +08:00
|
|
|
return decoded_info[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BarcodeImpl::detectMulti(InputArray img, OutputArray points) const
|
|
|
|
{
|
|
|
|
return detect(img, points);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BarcodeImpl::decodeMulti(InputArray img, InputArray points, vector<string> &decoded_info, OutputArrayOfArrays straight_code) const
|
|
|
|
{
|
|
|
|
CV_UNUSED(straight_code);
|
|
|
|
vector<string> decoded_type;
|
|
|
|
return decodeWithType(img, points, decoded_info, decoded_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BarcodeImpl::detectAndDecodeMulti(InputArray img, vector<string> &decoded_info, OutputArray points, OutputArrayOfArrays straight_code) const
|
|
|
|
{
|
|
|
|
CV_UNUSED(straight_code);
|
|
|
|
vector<string> decoded_type;
|
|
|
|
return detectAndDecodeWithType(img, decoded_info, decoded_type, points);
|
|
|
|
}
|
|
|
|
|
|
|
|
//==================================================================================================
|
|
|
|
// Public class implementation
|
|
|
|
|
|
|
|
BarcodeDetector::BarcodeDetector()
|
|
|
|
: BarcodeDetector(string(), string())
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
BarcodeDetector::BarcodeDetector(const string &prototxt_path, const string &model_path)
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = new BarcodeImpl();
|
|
|
|
p = p_;
|
2023-10-20 04:42:11 +08:00
|
|
|
p_->sr = make_shared<SuperScale>();
|
2023-06-15 03:21:38 +08:00
|
|
|
if (!prototxt_path.empty() && !model_path.empty())
|
|
|
|
{
|
|
|
|
CV_Assert(utils::fs::exists(prototxt_path));
|
|
|
|
CV_Assert(utils::fs::exists(model_path));
|
|
|
|
int res = p_->sr->init(prototxt_path, model_path);
|
|
|
|
CV_Assert(res == 0);
|
|
|
|
p_->use_nn_sr = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
BarcodeDetector::~BarcodeDetector() = default;
|
|
|
|
|
|
|
|
bool BarcodeDetector::decodeWithType(InputArray img, InputArray points, vector<string> &decoded_info, vector<string> &decoded_type) const
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
|
|
|
|
CV_Assert(p_);
|
|
|
|
return p_->decodeWithType(img, points, decoded_info, decoded_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool BarcodeDetector::detectAndDecodeWithType(InputArray img, vector<string> &decoded_info, vector<string> &decoded_type, OutputArray points_) const
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
|
|
|
|
CV_Assert(p_);
|
|
|
|
return p_->detectAndDecodeWithType(img, decoded_info, decoded_type, points_);
|
|
|
|
}
|
|
|
|
|
2024-05-20 14:53:22 +08:00
|
|
|
double BarcodeDetector::getDownsamplingThreshold() const
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
|
|
|
|
CV_Assert(p_);
|
|
|
|
|
|
|
|
return p_->detectorThrDownSample;
|
|
|
|
}
|
|
|
|
|
|
|
|
BarcodeDetector& BarcodeDetector::setDownsamplingThreshold(double thresh)
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
|
|
|
|
CV_Assert(p_);
|
|
|
|
CV_Assert(thresh >= 64);
|
|
|
|
|
|
|
|
p_->detectorThrDownSample = thresh;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
void BarcodeDetector::getDetectorScales(CV_OUT std::vector<float>& sizes) const
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
|
|
|
|
CV_Assert(p_);
|
|
|
|
|
|
|
|
sizes = p_->detectorWindowSizes;
|
|
|
|
}
|
|
|
|
|
|
|
|
BarcodeDetector& BarcodeDetector::setDetectorScales(const std::vector<float>& sizes)
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
|
|
|
|
CV_Assert(p_);
|
|
|
|
CV_Assert(sizes.size() > 0 && sizes.size() <= 16);
|
|
|
|
|
|
|
|
for (const float &size : sizes) {
|
|
|
|
CV_Assert(size > 0 && size < 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
p_->detectorWindowSizes = sizes;
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
double BarcodeDetector::getGradientThreshold() const
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
|
|
|
|
CV_Assert(p_);
|
|
|
|
|
|
|
|
return p_->detectorThrGradMagnitude;
|
|
|
|
}
|
|
|
|
|
|
|
|
BarcodeDetector& BarcodeDetector::setGradientThreshold(double thresh)
|
|
|
|
{
|
|
|
|
Ptr<BarcodeImpl> p_ = dynamic_pointer_cast<BarcodeImpl>(p);
|
|
|
|
CV_Assert(p_);
|
|
|
|
CV_Assert(thresh >= 0 && thresh < 1e4);
|
|
|
|
|
|
|
|
p_->detectorThrGradMagnitude = thresh;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
2023-06-15 03:21:38 +08:00
|
|
|
}// namespace barcode
|
|
|
|
} // namespace cv
|