opencv/modules/calib3d/src/usac/ransac_solvers.cpp

1036 lines
53 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "../precomp.hpp"
#include "../usac.hpp"
#include <atomic>
namespace cv { namespace usac {
int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp);
void setParameters (int flag, Ptr<Model> &params, EstimationMethod estimator, double thr,
int max_iters, double conf, bool mask_needed);
class RansacOutputImpl : public RansacOutput {
private:
Mat model;
// vector of number_inliers size
std::vector<int> inliers;
// vector of points size, true if inlier, false-outlier
std::vector<bool> inliers_mask;
// vector of points size, value of i-th index corresponds to error of i-th point if i is inlier.
std::vector<double> errors;
// the best found score of RANSAC
double score;
int seconds, milliseconds, microseconds;
int time_mcs, number_inliers, number_estimated_models, number_good_models;
int number_iterations; // number of iterations of main RANSAC
public:
RansacOutputImpl (const Mat &model_, const std::vector<bool> &inliers_mask_,
int time_mcs_, double score_, int number_inliers_, int number_iterations_,
int number_estimated_models_, int number_good_models_) {
model_.copyTo(model);
inliers_mask = inliers_mask_;
time_mcs = time_mcs_;
score = score_;
number_inliers = number_inliers_;
number_iterations = number_iterations_;
number_estimated_models = number_estimated_models_;
number_good_models = number_good_models_;
microseconds = time_mcs % 1000;
milliseconds = ((time_mcs - microseconds)/1000) % 1000;
seconds = ((time_mcs - 1000*milliseconds - microseconds)/(1000*1000)) % 60;
}
/*
* Return inliers' indices.
* size of vector = number of inliers
*/
const std::vector<int> &getInliers() override {
if (inliers.empty()) {
inliers.reserve(inliers_mask.size());
int pt_cnt = 0;
for (bool is_inlier : inliers_mask) {
if (is_inlier)
inliers.emplace_back(pt_cnt);
pt_cnt++;
}
}
return inliers;
}
// Return inliers mask. Vector of points size. 1-inlier, 0-outlier.
const std::vector<bool> &getInliersMask() const override { return inliers_mask; }
int getTimeMicroSeconds() const override {return time_mcs; }
int getTimeMicroSeconds1() const override {return microseconds; }
int getTimeMilliSeconds2() const override {return milliseconds; }
int getTimeSeconds3() const override {return seconds; }
int getNumberOfInliers() const override { return number_inliers; }
int getNumberOfMainIterations() const override { return number_iterations; }
int getNumberOfGoodModels () const override { return number_good_models; }
int getNumberOfEstimatedModels () const override { return number_estimated_models; }
const Mat &getModel() const override { return model; }
};
Ptr<RansacOutput> RansacOutput::create(const Mat &model_, const std::vector<bool> &inliers_mask_,
int time_mcs_, double score_, int number_inliers_, int number_iterations_,
int number_estimated_models_, int number_good_models_) {
return makePtr<RansacOutputImpl>(model_, inliers_mask_, time_mcs_, score_, number_inliers_,
number_iterations_, number_estimated_models_, number_good_models_);
}
class Ransac {
protected:
const Ptr<const Model> params;
const Ptr<const Estimator> _estimator;
const Ptr<Quality> _quality;
const Ptr<Sampler> _sampler;
const Ptr<TerminationCriteria> _termination_criteria;
const Ptr<ModelVerifier> _model_verifier;
const Ptr<Degeneracy> _degeneracy;
const Ptr<LocalOptimization> _local_optimization;
const Ptr<FinalModelPolisher> model_polisher;
const int points_size, state;
const bool parallel;
public:
Ransac (const Ptr<const Model> &params_, int points_size_, const Ptr<const Estimator> &estimator_, const Ptr<Quality> &quality_,
const Ptr<Sampler> &sampler_, const Ptr<TerminationCriteria> &termination_criteria_,
const Ptr<ModelVerifier> &model_verifier_, const Ptr<Degeneracy> &degeneracy_,
const Ptr<LocalOptimization> &local_optimization_, const Ptr<FinalModelPolisher> &model_polisher_,
bool parallel_=false, int state_ = 0) :
params (params_), _estimator (estimator_), _quality (quality_), _sampler (sampler_),
_termination_criteria (termination_criteria_), _model_verifier (model_verifier_),
_degeneracy (degeneracy_), _local_optimization (local_optimization_),
model_polisher (model_polisher_), points_size (points_size_), state(state_),
parallel(parallel_) {}
bool run(Ptr<RansacOutput> &ransac_output) {
if (points_size < params->getSampleSize())
return false;
const auto begin_time = std::chrono::steady_clock::now();
// check if LO
const bool LO = params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL;
const bool is_magsac = params->getLO() == LocalOptimMethod::LOCAL_OPTIM_SIGMA;
const int max_hyp_test_before_ver = params->getMaxNumHypothesisToTestBeforeRejection();
const int repeat_magsac = 10, max_iters_before_LO = params->getMaxItersBeforeLO();
Score best_score;
Mat best_model;
int final_iters;
if (! parallel) {
auto update_best = [&] (const Mat &new_model, const Score &new_score) {
best_score = new_score;
// remember best model
new_model.copyTo(best_model);
// update quality and verifier to save evaluation time of a model
_quality->setBestScore(best_score.score);
// update verifier
_model_verifier->update(best_score.inlier_number);
// update upper bound of iterations
return _termination_criteria->update(best_model, best_score.inlier_number);
};
bool was_LO_run = false;
Mat non_degenerate_model, lo_model;
Score current_score, lo_score, non_denegenerate_model_score;
// reallocate memory for models
std::vector<Mat> models(_estimator->getMaxNumSolutions());
// allocate memory for sample
std::vector<int> sample(_estimator->getMinimalSampleSize());
int iters = 0, max_iters = params->getMaxIters();
for (; iters < max_iters; iters++) {
_sampler->generateSample(sample);
const int number_of_models = _estimator->estimateModels(sample, models);
for (int i = 0; i < number_of_models; i++) {
if (iters < max_hyp_test_before_ver) {
current_score = _quality->getScore(models[i]);
} else {
if (is_magsac && iters % repeat_magsac == 0) {
if (!_local_optimization->refineModel
(models[i], best_score, models[i], current_score))
continue;
} else if (_model_verifier->isModelGood(models[i])) {
if (!_model_verifier->getScore(current_score)) {
if (_model_verifier->hasErrors())
current_score = _quality->getScore(_model_verifier->getErrors());
else current_score = _quality->getScore(models[i]);
}
} else continue;
}
if (current_score.isBetter(best_score)) {
if (_degeneracy->recoverIfDegenerate(sample, models[i],
non_degenerate_model, non_denegenerate_model_score)) {
// check if best non degenerate model is better than so far the best model
if (non_denegenerate_model_score.isBetter(best_score))
max_iters = update_best(non_degenerate_model, non_denegenerate_model_score);
else continue;
} else max_iters = update_best(models[i], current_score);
if (LO && iters >= max_iters_before_LO) {
// do magsac if it wasn't already run
if (is_magsac && iters % repeat_magsac == 0 && iters >= max_hyp_test_before_ver) continue; // magsac has already run
was_LO_run = true;
// update model by Local optimization
if (_local_optimization->refineModel
(best_model, best_score, lo_model, lo_score)) {
if (lo_score.isBetter(best_score)){
max_iters = update_best(lo_model, lo_score);
}
}
}
if (iters > max_iters)
break;
} // end of if so far the best score
} // end loop of number of models
if (LO && !was_LO_run && iters >= max_iters_before_LO) {
was_LO_run = true;
if (_local_optimization->refineModel(best_model, best_score, lo_model, lo_score))
if (lo_score.isBetter(best_score)){
max_iters = update_best(lo_model, lo_score);
}
}
} // end main while loop
final_iters = iters;
} else {
const int MAX_THREADS = getNumThreads();
const bool is_prosac = params->getSampler() == SamplingMethod::SAMPLING_PROSAC;
std::atomic_bool success(false);
std::atomic_int num_hypothesis_tested(0);
std::atomic_int thread_cnt(0);
std::vector<Score> best_scores(MAX_THREADS);
std::vector<Mat> best_models(MAX_THREADS);
Mutex mutex; // only for prosac
///////////////////////////////////////////////////////////////////////////////////////////////////////
parallel_for_(Range(0, MAX_THREADS), [&](const Range & /*range*/) {
if (!success) { // cover all if not success to avoid thread creating new variables
const int thread_rng_id = thread_cnt++;
int thread_state = state + 10*thread_rng_id;
Ptr<Estimator> estimator = _estimator->clone();
Ptr<Degeneracy> degeneracy = _degeneracy->clone(thread_state++);
Ptr<Quality> quality = _quality->clone();
Ptr<ModelVerifier> model_verifier = _model_verifier->clone(thread_state++); // update verifier
Ptr<LocalOptimization> local_optimization;
if (LO)
local_optimization = _local_optimization->clone(thread_state++);
Ptr<TerminationCriteria> termination_criteria = _termination_criteria->clone();
Ptr<Sampler> sampler;
if (!is_prosac)
sampler = _sampler->clone(thread_state);
Mat best_model_thread, non_degenerate_model, lo_model;
Score best_score_thread, current_score, non_denegenerate_model_score, lo_score,
best_score_all_threads;
std::vector<int> sample(estimator->getMinimalSampleSize());
std::vector<Mat> models(estimator->getMaxNumSolutions());
int iters, max_iters = params->getMaxIters();
auto update_best = [&] (const Score &new_score, const Mat &new_model) {
// copy new score to best score
best_score_thread = new_score;
best_scores[thread_rng_id] = best_score_thread;
// remember best model
new_model.copyTo(best_model_thread);
best_model_thread.copyTo(best_models[thread_rng_id]);
best_score_all_threads = best_score_thread;
// update upper bound of iterations
return termination_criteria->update
(best_model_thread, best_score_thread.inlier_number);
};
bool was_LO_run = false;
for (iters = 0; iters < max_iters && !success; iters++) {
success = num_hypothesis_tested++ > max_iters;
if (iters % 10) {
// Synchronize threads. just to speed verification of model.
int best_thread_idx = thread_rng_id;
bool updated = false;
for (int t = 0; t < MAX_THREADS; t++) {
if (best_scores[t].isBetter(best_score_all_threads)) {
best_score_all_threads = best_scores[t];
updated = true;
best_thread_idx = t;
}
}
if (updated && best_thread_idx != thread_rng_id) {
quality->setBestScore(best_score_all_threads.score);
model_verifier->update(best_score_all_threads.inlier_number);
}
}
if (is_prosac) {
// use global sampler
mutex.lock();
_sampler->generateSample(sample);
mutex.unlock();
} else sampler->generateSample(sample); // use local sampler
const int number_of_models = estimator->estimateModels(sample, models);
for (int i = 0; i < number_of_models; i++) {
if (iters < max_hyp_test_before_ver) {
current_score = quality->getScore(models[i]);
} else {
if (is_magsac && iters % repeat_magsac == 0) {
2020-11-11 06:54:01 +08:00
if (local_optimization && !local_optimization->refineModel
(models[i], best_score_thread, models[i], current_score))
continue;
} else if (model_verifier->isModelGood(models[i])) {
if (!model_verifier->getScore(current_score)) {
if (model_verifier->hasErrors())
current_score = quality->getScore(model_verifier->getErrors());
else current_score = quality->getScore(models[i]);
}
} else continue;
}
if (current_score.isBetter(best_score_all_threads)) {
if (degeneracy->recoverIfDegenerate(sample, models[i],
non_degenerate_model, non_denegenerate_model_score)) {
// check if best non degenerate model is better than so far the best model
if (non_denegenerate_model_score.isBetter(best_score_thread))
max_iters = update_best(non_denegenerate_model_score, non_degenerate_model);
else continue;
} else
max_iters = update_best(current_score, models[i]);
if (LO && iters >= max_iters_before_LO) {
// do magsac if it wasn't already run
if (is_magsac && iters % repeat_magsac == 0 && iters >= max_hyp_test_before_ver) continue;
was_LO_run = true;
// update model by Local optimizaion
if (local_optimization->refineModel
(best_model_thread, best_score_thread, lo_model, lo_score))
if (lo_score.isBetter(best_score_thread)) {
max_iters = update_best(lo_score, lo_model);
}
}
if (num_hypothesis_tested > max_iters) {
success = true; break;
}
} // end of if so far the best score
} // end loop of number of models
if (LO && !was_LO_run && iters >= max_iters_before_LO) {
was_LO_run = true;
if (_local_optimization->refineModel(best_model, best_score, lo_model, lo_score))
if (lo_score.isBetter(best_score)){
max_iters = update_best(lo_score, lo_model);
}
}
} // end of loop over iters
}}); // end parallel
///////////////////////////////////////////////////////////////////////////////////////////////////////
// find best model from all threads' models
best_score = best_scores[0];
int best_thread_idx = 0;
for (int i = 1; i < MAX_THREADS; i++) {
if (best_scores[i].isBetter(best_score)) {
best_score = best_scores[i];
best_thread_idx = i;
}
}
best_model = best_models[best_thread_idx];
final_iters = num_hypothesis_tested;
}
if (best_model.empty())
return false;
// polish final model
if (params->getFinalPolisher() != PolishingMethod::NonePolisher) {
Mat polished_model;
Score polisher_score;
if (model_polisher->polishSoFarTheBestModel(best_model, best_score,
polished_model, polisher_score))
if (polisher_score.isBetter(best_score)) {
best_score = polisher_score;
polished_model.copyTo(best_model);
}
}
// ================= here is ending ransac main implementation ===========================
std::vector<bool> inliers_mask;
if (params->isMaskRequired()) {
inliers_mask = std::vector<bool>(points_size);
// get final inliers from the best model
_quality->getInliers(best_model, inliers_mask);
}
// Store results
ransac_output = RansacOutput::create(best_model, inliers_mask,
static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>
(std::chrono::steady_clock::now() - begin_time).count()), best_score.score,
best_score.inlier_number, final_iters, -1, -1);
return true;
}
};
/*
* pts1, pts2 are matrices either N x a, N x b or a x N or b x N, where N > a and N > b
* pts1 are image points, if pnp pts2 are object points otherwise - image points as well.
* output is matrix of size N x (a + b)
* return points_size = N
*/
int mergePoints (InputArray pts1_, InputArray pts2_, Mat &pts, bool ispnp) {
Mat pts1 = pts1_.getMat(), pts2 = pts2_.getMat();
auto convertPoints = [] (Mat &points, int pt_dim) {
points.convertTo(points, CV_32F); // convert points to have float precision
if (points.channels() > 1)
points = points.reshape(1, (int)points.total()); // convert point to have 1 channel
if (points.rows < points.cols)
transpose(points, points); // transpose so points will be in rows
CV_CheckGE(points.cols, pt_dim, "Invalid dimension of point");
if (points.cols != pt_dim) // in case when image points are 3D convert them to 2D
points = points.colRange(0, pt_dim);
};
convertPoints(pts1, 2); // pts1 are always image points
convertPoints(pts2, ispnp ? 3 : 2); // for PnP points are 3D
// points are of size [Nx2 Nx2] = Nx4 for H, F, E
// points are of size [Nx2 Nx3] = Nx5 for PnP
hconcat(pts1, pts2, pts);
return pts.rows;
}
void saveMask (OutputArray mask, const std::vector<bool> &inliers_mask) {
if (mask.needed()) {
const int points_size = (int) inliers_mask.size();
2021-04-20 17:57:42 +08:00
Mat tmp_mask(points_size, 1, CV_8U);
auto * maskptr = tmp_mask.ptr<uchar>();
for (int i = 0; i < points_size; i++)
maskptr[i] = (uchar) inliers_mask[i];
2021-04-20 17:57:42 +08:00
tmp_mask.copyTo(mask);
}
}
void setParameters (Ptr<Model> &params, EstimationMethod estimator, const UsacParams &usac_params,
bool mask_needed) {
params = Model::create(usac_params.threshold, estimator, usac_params.sampler,
usac_params.confidence, usac_params.maxIterations, usac_params.score);
params->setLocalOptimization(usac_params.loMethod);
params->setLOSampleSize(usac_params.loSampleSize);
params->setLOIterations(usac_params.loIterations);
params->setParallel(usac_params.isParallel);
params->setNeighborsType(usac_params.neighborsSearch);
params->setRandomGeneratorState(usac_params.randomGeneratorState);
params->maskRequired(mask_needed);
}
void setParameters (int flag, Ptr<Model> &params, EstimationMethod estimator, double thr,
int max_iters, double conf, bool mask_needed) {
switch (flag) {
case USAC_DEFAULT:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO);
break;
case USAC_MAGSAC:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MAGSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_SIGMA);
params->setLOSampleSize(params->isHomography() ? 75 : 50);
params->setLOIterations(params->isHomography() ? 15 : 10);
break;
case USAC_PARALLEL:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setParallel(true);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
break;
case USAC_ACCURATE:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_GC);
params->setLOSampleSize(20);
params->setLOIterations(25);
break;
case USAC_FAST:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_UNIFORM, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO);
params->setLOIterations(5);
params->setLOIterativeIters(3);
break;
case USAC_PROSAC:
params = Model::create(thr, estimator, SamplingMethod::SAMPLING_PROSAC, conf, max_iters,
ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
break;
case USAC_FM_8PTS:
params = Model::create(thr, EstimationMethod::Fundamental8,SamplingMethod::SAMPLING_UNIFORM,
conf, max_iters,ScoreMethod::SCORE_METHOD_MSAC);
params->setLocalOptimization(LocalOptimMethod ::LOCAL_OPTIM_INNER_LO);
break;
default: CV_Error(cv::Error::StsBadFlag, "Incorrect flag for USAC!");
}
// do not do too many iterations for PnP
if (estimator == EstimationMethod::P3P) {
if (params->getLOInnerMaxIters() > 15)
params->setLOIterations(15);
params->setLOIterativeIters(0);
}
params->maskRequired(mask_needed);
}
Mat findHomography (InputArray srcPoints, InputArray dstPoints, int method, double thr,
OutputArray mask, const int max_iters, const double confidence) {
Ptr<Model> params;
setParameters(method, params, EstimationMethod::Homography, thr, max_iters, confidence, mask.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, srcPoints, dstPoints, params->getRandomGeneratorState(),
ransac_output, noArray(), noArray(), noArray(), noArray())) {
saveMask(mask, ransac_output->getInliersMask());
return ransac_output->getModel() / ransac_output->getModel().at<double>(2,2);
}
if (mask.needed()){
mask.create(std::max(srcPoints.getMat().rows, srcPoints.getMat().cols), 1, CV_8U);
mask.setTo(Scalar::all(0));
}
return Mat();
}
Mat findFundamentalMat( InputArray points1, InputArray points2, int method, double thr,
double confidence, int max_iters, OutputArray mask ) {
Ptr<Model> params;
setParameters(method, params, EstimationMethod::Fundamental, thr, max_iters, confidence, mask.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, points1, points2, params->getRandomGeneratorState(),
ransac_output, noArray(), noArray(), noArray(), noArray())) {
saveMask(mask, ransac_output->getInliersMask());
return ransac_output->getModel();
}
if (mask.needed()){
mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U);
mask.setTo(Scalar::all(0));
}
return Mat();
}
Mat findEssentialMat (InputArray points1, InputArray points2, InputArray cameraMatrix1,
int method, double prob, double thr, OutputArray mask) {
Ptr<Model> params;
setParameters(method, params, EstimationMethod::Essential, thr, 1000, prob, mask.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, points1, points2, params->getRandomGeneratorState(),
ransac_output, cameraMatrix1, cameraMatrix1, noArray(), noArray())) {
saveMask(mask, ransac_output->getInliersMask());
return ransac_output->getModel();
}
if (mask.needed()){
mask.create(std::max(points1.getMat().rows, points1.getMat().cols), 1, CV_8U);
mask.setTo(Scalar::all(0));
}
return Mat();
}
bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, OutputArray tvec,
bool /*useExtrinsicGuess*/, int max_iters, float thr, double conf,
OutputArray inliers, int method) {
Ptr<Model> params;
setParameters(method, params, cameraMatrix.empty() ? EstimationMethod ::P6P : EstimationMethod ::P3P,
thr, max_iters, conf, inliers.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, imagePoints, objectPoints, params->getRandomGeneratorState(),
ransac_output, cameraMatrix, noArray(), distCoeffs, noArray())) {
if (inliers.needed()) {
const auto &inliers_mask = ransac_output->getInliersMask();
Mat inliers_;
for (int i = 0; i < (int)inliers_mask.size(); i++)
if (inliers_mask[i])
inliers_.push_back(i);
inliers_.copyTo(inliers);
}
const Mat &model = ransac_output->getModel();
model.col(0).copyTo(rvec);
model.col(1).copyTo(tvec);
return true;
}
return false;
}
Mat estimateAffine2D(InputArray from, InputArray to, OutputArray mask, int method,
double thr, int max_iters, double conf, int /*refineIters*/) {
Ptr<Model> params;
setParameters(method, params, EstimationMethod ::Affine, thr, max_iters, conf, mask.needed());
Ptr<RansacOutput> ransac_output;
if (run(params, from, to, params->getRandomGeneratorState(),
ransac_output, noArray(), noArray(), noArray(), noArray())) {
saveMask(mask, ransac_output->getInliersMask());
return ransac_output->getModel().rowRange(0,2);
}
if (mask.needed()){
mask.create(std::max(from.getMat().rows, from.getMat().cols), 1, CV_8U);
mask.setTo(Scalar::all(0));
}
return Mat();
}
class ModelImpl : public Model {
private:
// main parameters:
double threshold, confidence;
int sample_size, max_iterations;
EstimationMethod estimator;
SamplingMethod sampler;
ScoreMethod score;
// for neighborhood graph
int k_nearest_neighbors = 8;//, flann_search_params = 5, num_kd_trees = 1; // for FLANN
int cell_size = 50; // pixels, for grid neighbors searching
int radius = 30; // pixels, for radius-search neighborhood graph
NeighborSearchMethod neighborsType = NeighborSearchMethod::NEIGH_GRID;
// Local Optimization parameters
LocalOptimMethod lo = LocalOptimMethod ::LOCAL_OPTIM_INNER_AND_ITER_LO;
int lo_sample_size=16, lo_inner_iterations=15, lo_iterative_iterations=8,
lo_thr_multiplier=15, lo_iter_sample_size = 30;
// Graph cut parameters
const double spatial_coherence_term = 0.975;
// apply polisher for final RANSAC model
PolishingMethod polisher = PolishingMethod ::LSQPolisher;
// preemptive verification test
VerificationMethod verifier = VerificationMethod ::SprtVerifier;
const int max_hypothesis_test_before_verification = 15;
// sprt parameters
// lower bound estimate is 1% of inliers
double sprt_eps = 0.01, sprt_delta = 0.008, avg_num_models, time_for_model_est;
// estimator error
ErrorMetric est_error;
// progressive napsac
double relax_coef = 0.1;
// for building neighborhood graphs
const std::vector<int> grid_cell_number = {16, 8, 4, 2};
//for final least squares polisher
int final_lsq_iters = 3;
bool need_mask = true, is_parallel = false;
int random_generator_state = 0;
const int max_iters_before_LO = 100;
// magsac parameters:
int DoF = 2;
double sigma_quantile = 3.04, upper_incomplete_of_sigma_quantile = 0.00419,
lower_incomplete_of_sigma_quantile = 0.8629, C = 0.5, maximum_thr = 7.5;
public:
ModelImpl (double threshold_, EstimationMethod estimator_, SamplingMethod sampler_, double confidence_=0.95,
int max_iterations_=5000, ScoreMethod score_ =ScoreMethod::SCORE_METHOD_MSAC) {
estimator = estimator_;
sampler = sampler_;
confidence = confidence_;
max_iterations = max_iterations_;
score = score_;
switch (estimator_) {
// time for model estimation is basically a ratio of time need to estimate a model to
// time needed to verify if a point is consistent with this model
case (EstimationMethod::Affine):
avg_num_models = 1; time_for_model_est = 50;
sample_size = 3; est_error = ErrorMetric ::FORW_REPR_ERR; break;
case (EstimationMethod::Homography):
avg_num_models = 1; time_for_model_est = 150;
sample_size = 4; est_error = ErrorMetric ::FORW_REPR_ERR; break;
case (EstimationMethod::Fundamental):
avg_num_models = 2.38; time_for_model_est = 180; maximum_thr = 2.5;
sample_size = 7; est_error = ErrorMetric ::SAMPSON_ERR; break;
case (EstimationMethod::Fundamental8):
avg_num_models = 1; time_for_model_est = 100; maximum_thr = 2.5;
sample_size = 8; est_error = ErrorMetric ::SAMPSON_ERR; break;
case (EstimationMethod::Essential):
avg_num_models = 3.93; time_for_model_est = 1000; maximum_thr = 2.5;
sample_size = 5; est_error = ErrorMetric ::SGD_ERR; break;
case (EstimationMethod::P3P):
avg_num_models = 1.38; time_for_model_est = 800;
sample_size = 3; est_error = ErrorMetric ::RERPOJ; break;
case (EstimationMethod::P6P):
avg_num_models = 1; time_for_model_est = 300;
sample_size = 6; est_error = ErrorMetric ::RERPOJ; break;
default: CV_Error(cv::Error::StsNotImplemented, "Estimator has not implemented yet!");
}
if (estimator_ == EstimationMethod::P3P || estimator_ == EstimationMethod::P6P) {
neighborsType = NeighborSearchMethod::NEIGH_FLANN_KNN;
k_nearest_neighbors = 2;
}
if (estimator == EstimationMethod::Fundamental || estimator == EstimationMethod::Essential) {
lo_sample_size = 21;
lo_thr_multiplier = 10;
}
if (estimator == EstimationMethod::Homography)
maximum_thr = 8.;
threshold = threshold_;
}
void setVerifier (VerificationMethod verifier_) override { verifier = verifier_; }
void setPolisher (PolishingMethod polisher_) override { polisher = polisher_; }
void setParallel (bool is_parallel_) override { is_parallel = is_parallel_; }
void setError (ErrorMetric error_) override { est_error = error_; }
void setLocalOptimization (LocalOptimMethod lo_) override { lo = lo_; }
void setKNearestNeighhbors (int knn_) override { k_nearest_neighbors = knn_; }
void setNeighborsType (NeighborSearchMethod neighbors) override { neighborsType = neighbors; }
void setCellSize (int cell_size_) override { cell_size = cell_size_; }
void setLOIterations (int iters) override { lo_inner_iterations = iters; }
void setLOIterativeIters (int iters) override {lo_iterative_iterations = iters; }
void setLOSampleSize (int lo_sample_size_) override { lo_sample_size = lo_sample_size_; }
void setThresholdMultiplierLO (double thr_mult) override { lo_thr_multiplier = (int) round(thr_mult); }
void maskRequired (bool need_mask_) override { need_mask = need_mask_; }
void setRandomGeneratorState (int state) override { random_generator_state = state; }
bool isMaskRequired () const override { return need_mask; }
NeighborSearchMethod getNeighborsSearch () const override { return neighborsType; }
int getKNN () const override { return k_nearest_neighbors; }
ErrorMetric getError () const override { return est_error; }
EstimationMethod getEstimator () const override { return estimator; }
int getSampleSize () const override { return sample_size; }
int getFinalLSQIterations () const override { return final_lsq_iters; }
int getDegreesOfFreedom () const override { return DoF; }
double getSigmaQuantile () const override { return sigma_quantile; }
double getUpperIncompleteOfSigmaQuantile () const override {
return upper_incomplete_of_sigma_quantile;
}
double getLowerIncompleteOfSigmaQuantile () const override {
return lower_incomplete_of_sigma_quantile;
}
double getC () const override { return C; }
double getMaximumThreshold () const override { return maximum_thr; }
double getGraphCutSpatialCoherenceTerm () const override { return spatial_coherence_term; }
int getLOSampleSize () const override { return lo_sample_size; }
int getMaxNumHypothesisToTestBeforeRejection() const override {
return max_hypothesis_test_before_verification;
}
PolishingMethod getFinalPolisher () const override { return polisher; }
int getLOThresholdMultiplier() const override { return lo_thr_multiplier; }
int getLOIterativeSampleSize() const override { return lo_iter_sample_size; }
int getLOIterativeMaxIters() const override { return lo_iterative_iterations; }
int getLOInnerMaxIters() const override { return lo_inner_iterations; }
LocalOptimMethod getLO () const override { return lo; }
ScoreMethod getScore () const override { return score; }
int getMaxIters () const override { return max_iterations; }
double getConfidence () const override { return confidence; }
double getThreshold () const override { return threshold; }
VerificationMethod getVerifier () const override { return verifier; }
SamplingMethod getSampler () const override { return sampler; }
int getRandomGeneratorState () const override { return random_generator_state; }
int getMaxItersBeforeLO () const override { return max_iters_before_LO; }
double getSPRTdelta () const override { return sprt_delta; }
double getSPRTepsilon () const override { return sprt_eps; }
double getSPRTavgNumModels () const override { return avg_num_models; }
int getCellSize () const override { return cell_size; }
int getGraphRadius() const override { return radius; }
double getTimeForModelEstimation () const override { return time_for_model_est; }
double getRelaxCoef () const override { return relax_coef; }
const std::vector<int> &getGridCellNumber () const override { return grid_cell_number; }
bool isParallel () const override { return is_parallel; }
bool isFundamental () const override {
return estimator == EstimationMethod ::Fundamental ||
estimator == EstimationMethod ::Fundamental8;
}
bool isHomography () const override { return estimator == EstimationMethod ::Homography; }
bool isEssential () const override { return estimator == EstimationMethod ::Essential; }
bool isPnP() const override {
return estimator == EstimationMethod ::P3P || estimator == EstimationMethod ::P6P;
}
};
Ptr<Model> Model::create(double threshold_, EstimationMethod estimator_, SamplingMethod sampler_,
double confidence_, int max_iterations_, ScoreMethod score_) {
return makePtr<ModelImpl>(threshold_, estimator_, sampler_, confidence_,
max_iterations_, score_);
}
bool run (const Ptr<const Model> &params, InputArray points1, InputArray points2, int state,
Ptr<RansacOutput> &ransac_output, InputArray K1_, InputArray K2_,
InputArray dist_coeff1, InputArray dist_coeff2) {
Ptr<Error> error;
Ptr<Estimator> estimator;
Ptr<NeighborhoodGraph> graph;
Ptr<Degeneracy> degeneracy;
Ptr<Quality> quality;
Ptr<ModelVerifier> verifier;
Ptr<Sampler> sampler;
Ptr<RandomGenerator> lo_sampler;
Ptr<TerminationCriteria> termination;
Ptr<LocalOptimization> lo;
Ptr<FinalModelPolisher> polisher;
Ptr<MinimalSolver> min_solver;
Ptr<NonMinimalSolver> non_min_solver;
Mat points, K1, K2, calib_points, undist_points1, undist_points2;
int points_size;
double threshold = params->getThreshold(), max_thr = params->getMaximumThreshold();
const int min_sample_size = params->getSampleSize();
if (params->isPnP()) {
if (! K1_.empty()) {
K1 = K1_.getMat(); K1.convertTo(K1, CV_64F);
if (! dist_coeff1.empty()) {
// undistortPoints also calibrate points using K
if (points1.isContinuous())
undistortPoints(points1, undist_points1, K1_, dist_coeff1);
else undistortPoints(points1.getMat().clone(), undist_points1, K1_, dist_coeff1);
points_size = mergePoints(undist_points1, points2, points, true);
Utils::normalizeAndDecalibPointsPnP (K1, points, calib_points);
} else {
points_size = mergePoints(points1, points2, points, true);
Utils::calibrateAndNormalizePointsPnP(K1, points, calib_points);
}
} else
points_size = mergePoints(points1, points2, points, true);
} else {
if (params->isEssential()) {
2020-08-18 03:15:19 +08:00
CV_CheckEQ((int)(!K1_.empty() && !K2_.empty()), 1, "Intrinsic matrix must not be empty!");
K1 = K1_.getMat(); K1.convertTo(K1, CV_64F);
K2 = K2_.getMat(); K2.convertTo(K2, CV_64F);
if (! dist_coeff1.empty() || ! dist_coeff2.empty()) {
// undistortPoints also calibrate points using K
if (points1.isContinuous())
undistortPoints(points1, undist_points1, K1_, dist_coeff1);
else undistortPoints(points1.getMat().clone(), undist_points1, K1_, dist_coeff1);
if (points2.isContinuous())
undistortPoints(points2, undist_points2, K2_, dist_coeff2);
else undistortPoints(points2.getMat().clone(), undist_points2, K2_, dist_coeff2);
points_size = mergePoints(undist_points1, undist_points2, calib_points, false);
} else {
points_size = mergePoints(points1, points2, points, false);
Utils::calibratePoints(K1, K2, points, calib_points);
}
threshold = Utils::getCalibratedThreshold(threshold, K1, K2);
max_thr = Utils::getCalibratedThreshold(max_thr, K1, K2);
} else
points_size = mergePoints(points1, points2, points, false);
}
// Since error function output squared error distance, so make
// threshold squared as well
threshold *= threshold;
if (params->getSampler() == SamplingMethod::SAMPLING_NAPSAC || params->getLO() == LocalOptimMethod::LOCAL_OPTIM_GC) {
if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_GRID) {
graph = GridNeighborhoodGraph::create(points, points_size,
params->getCellSize(), params->getCellSize(),
params->getCellSize(), params->getCellSize(), 10);
} else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_KNN) {
graph = FlannNeighborhoodGraph::create(points, points_size,params->getKNN(), false, 5, 1);
} else if (params->getNeighborsSearch() == NeighborSearchMethod::NEIGH_FLANN_RADIUS) {
graph = RadiusSearchNeighborhoodGraph::create(points, points_size,
params->getGraphRadius(), 5, 1);
} else CV_Error(cv::Error::StsNotImplemented, "Graph type is not implemented!");
}
std::vector<Ptr<NeighborhoodGraph>> layers;
if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) {
2020-08-18 03:15:19 +08:00
CV_CheckEQ((int)params->isPnP(), 0, "ProgressiveNAPSAC for PnP is not implemented!");
const auto &cell_number_per_layer = params->getGridCellNumber();
layers.reserve(cell_number_per_layer.size());
const auto * const pts = (float *) points.data;
float img1_width = 0, img1_height = 0, img2_width = 0, img2_height = 0;
for (int i = 0; i < 4 * points_size; i += 4) {
if (pts[i ] > img1_width ) img1_width = pts[i ];
if (pts[i + 1] > img1_height) img1_height = pts[i + 1];
if (pts[i + 2] > img2_width ) img2_width = pts[i + 2];
if (pts[i + 3] > img2_height) img2_height = pts[i + 3];
}
// Create grid graphs (overlapping layes of given cell numbers)
for (int layer_idx = 0; layer_idx < (int)cell_number_per_layer.size(); layer_idx++) {
const int cell_number = cell_number_per_layer[layer_idx];
if (layer_idx > 0)
if (cell_number_per_layer[layer_idx-1] <= cell_number)
CV_Error(cv::Error::StsError, "Progressive NAPSAC sampler: "
"Cell number in layers must be in decreasing order!");
layers.emplace_back(GridNeighborhoodGraph::create(points, points_size,
(int)(img1_width / (float)cell_number), (int)(img1_height / (float)cell_number),
(int)(img2_width / (float)cell_number), (int)(img2_height / (float)cell_number), 10));
}
}
// update points by calibrated for Essential matrix after graph is calculated
if (params->isEssential()) {
points = calib_points;
// if maximum calibrated threshold significanlty differs threshold then set upper bound
if (max_thr > 10*threshold)
max_thr = sqrt(10*threshold); // max thr will be squared after
}
if (max_thr < threshold)
max_thr = threshold;
switch (params->getError()) {
case ErrorMetric::SYMM_REPR_ERR:
error = ReprojectionErrorSymmetric::create(points); break;
case ErrorMetric::FORW_REPR_ERR:
if (params->getEstimator() == EstimationMethod::Affine)
error = ReprojectionErrorAffine::create(points);
else error = ReprojectionErrorForward::create(points);
break;
case ErrorMetric::SAMPSON_ERR:
error = SampsonError::create(points); break;
case ErrorMetric::SGD_ERR:
error = SymmetricGeometricDistance::create(points); break;
case ErrorMetric::RERPOJ:
error = ReprojectionErrorPmatrix::create(points); break;
default: CV_Error(cv::Error::StsNotImplemented , "Error metric is not implemented!");
}
switch (params->getScore()) {
case ScoreMethod::SCORE_METHOD_RANSAC :
quality = RansacQuality::create(points_size, threshold, error); break;
case ScoreMethod::SCORE_METHOD_MSAC :
quality = MsacQuality::create(points_size, threshold, error); break;
case ScoreMethod::SCORE_METHOD_MAGSAC :
quality = MagsacQuality::create(max_thr, points_size, error,
threshold, params->getDegreesOfFreedom(), params->getSigmaQuantile(),
params->getUpperIncompleteOfSigmaQuantile(),
params->getLowerIncompleteOfSigmaQuantile(), params->getC()); break;
case ScoreMethod::SCORE_METHOD_LMEDS :
quality = LMedsQuality::create(points_size, threshold, error); break;
default: CV_Error(cv::Error::StsNotImplemented, "Score is not imeplemeted!");
}
if (params->isHomography()) {
degeneracy = HomographyDegeneracy::create(points);
min_solver = HomographyMinimalSolver4ptsGEM::create(points);
non_min_solver = HomographyNonMinimalSolver::create(points);
estimator = HomographyEstimator::create(min_solver, non_min_solver, degeneracy);
} else if (params->isFundamental()) {
degeneracy = FundamentalDegeneracy::create(state++, quality, points, min_sample_size, 5. /*sqr homogr thr*/);
if(min_sample_size == 7) min_solver = FundamentalMinimalSolver7pts::create(points);
else min_solver = FundamentalMinimalSolver8pts::create(points);
non_min_solver = FundamentalNonMinimalSolver::create(points);
estimator = FundamentalEstimator::create(min_solver, non_min_solver, degeneracy);
} else if (params->isEssential()) {
degeneracy = EssentialDegeneracy::create(points, min_sample_size);
min_solver = EssentialMinimalSolverStewenius5pts::create(points);
non_min_solver = EssentialNonMinimalSolver::create(points);
estimator = EssentialEstimator::create(min_solver, non_min_solver, degeneracy);
} else if (params->isPnP()) {
degeneracy = makePtr<Degeneracy>();
if (min_sample_size == 3) {
non_min_solver = DLSPnP::create(points, calib_points, K1);
min_solver = P3PSolver::create(points, calib_points, K1);
} else {
min_solver = PnPMinimalSolver6Pts::create(points);
non_min_solver = PnPNonMinimalSolver::create(points);
}
estimator = PnPEstimator::create(min_solver, non_min_solver);
} else if (params->getEstimator() == EstimationMethod::Affine) {
degeneracy = makePtr<Degeneracy>();
min_solver = AffineMinimalSolver::create(points);
non_min_solver = AffineNonMinimalSolver::create(points);
estimator = AffineEstimator::create(min_solver, non_min_solver);
} else CV_Error(cv::Error::StsNotImplemented, "Estimator not implemented!");
switch (params->getSampler()) {
case SamplingMethod::SAMPLING_UNIFORM:
sampler = UniformSampler::create(state++, min_sample_size, points_size); break;
case SamplingMethod::SAMPLING_PROSAC:
sampler = ProsacSampler::create(state++, points_size, min_sample_size, 200000); break;
case SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC:
sampler = ProgressiveNapsac::create(state++, points_size, min_sample_size, layers, 20); break;
case SamplingMethod::SAMPLING_NAPSAC:
sampler = NapsacSampler::create(state++, points_size, min_sample_size, graph); break;
default: CV_Error(cv::Error::StsNotImplemented, "Sampler is not implemented!");
}
switch (params->getVerifier()) {
case VerificationMethod::NullVerifier: verifier = ModelVerifier::create(); break;
case VerificationMethod::SprtVerifier:
verifier = SPRT::create(state++, error, points_size, params->getScore() == ScoreMethod ::SCORE_METHOD_MAGSAC ? max_thr : threshold,
params->getSPRTepsilon(), params->getSPRTdelta(), params->getTimeForModelEstimation(),
params->getSPRTavgNumModels(), params->getScore()); break;
default: CV_Error(cv::Error::StsNotImplemented, "Verifier is not imeplemented!");
}
if (params->getSampler() == SamplingMethod::SAMPLING_PROSAC) {
termination = ProsacTerminationCriteria::create(sampler.dynamicCast<ProsacSampler>(), error,
points_size, min_sample_size, params->getConfidence(),
params->getMaxIters(), 100, 0.05, 0.05, threshold);
} else if (params->getSampler() == SamplingMethod::SAMPLING_PROGRESSIVE_NAPSAC) {
if (params->getVerifier() == VerificationMethod::SprtVerifier)
termination = SPRTPNapsacTermination::create(((SPRT *)verifier.get())->getSPRTvector(),
params->getConfidence(), points_size, min_sample_size,
params->getMaxIters(), params->getRelaxCoef());
else
termination = StandardTerminationCriteria::create (params->getConfidence(),
points_size, min_sample_size, params->getMaxIters());
} else if (params->getVerifier() == VerificationMethod::SprtVerifier) {
termination = SPRTTermination::create(((SPRT *) verifier.get())->getSPRTvector(),
params->getConfidence(), points_size, min_sample_size, params->getMaxIters());
} else
termination = StandardTerminationCriteria::create
(params->getConfidence(), points_size, min_sample_size, params->getMaxIters());
if (params->getLO() != LocalOptimMethod::LOCAL_OPTIM_NULL) {
lo_sampler = UniformRandomGenerator::create(state++, points_size, params->getLOSampleSize());
switch (params->getLO()) {
case LocalOptimMethod::LOCAL_OPTIM_INNER_LO:
lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler,
points_size, threshold, false, params->getLOIterativeSampleSize(),
params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(),
params->getLOThresholdMultiplier()); break;
case LocalOptimMethod::LOCAL_OPTIM_INNER_AND_ITER_LO:
lo = InnerIterativeLocalOptimization::create(estimator, quality, lo_sampler,
points_size, threshold, true, params->getLOIterativeSampleSize(),
params->getLOInnerMaxIters(), params->getLOIterativeMaxIters(),
params->getLOThresholdMultiplier()); break;
case LocalOptimMethod::LOCAL_OPTIM_GC:
lo = GraphCut::create(estimator, error, quality, graph, lo_sampler, threshold,
params->getGraphCutSpatialCoherenceTerm(), params->getLOInnerMaxIters()); break;
case LocalOptimMethod::LOCAL_OPTIM_SIGMA:
lo = SigmaConsensus::create(estimator, error, quality, verifier,
params->getLOSampleSize(), params->getLOInnerMaxIters(),
params->getDegreesOfFreedom(), params->getSigmaQuantile(),
params->getUpperIncompleteOfSigmaQuantile(), params->getC(), max_thr); break;
default: CV_Error(cv::Error::StsNotImplemented , "Local Optimization is not implemented!");
}
}
if (params->getFinalPolisher() == PolishingMethod::LSQPolisher)
polisher = LeastSquaresPolishing::create(estimator, quality, params->getFinalLSQIterations());
Ransac ransac (params, points_size, estimator, quality, sampler,
termination, verifier, degeneracy, lo, polisher, params->isParallel(), state);
if (ransac.run(ransac_output)) {
if (params->isPnP()) {
// convert R to rodrigues and back and recalculate inliers which due to numerical
// issues can differ
Mat out, R, newR, newP, t, rvec;
if (K1.empty()) {
usac::Utils::decomposeProjection (ransac_output->getModel(), K1, R, t);
Rodrigues(R, rvec);
hconcat(rvec, t, out);
hconcat(out, K1, out);
} else {
const Mat Rt = K1.inv() * ransac_output->getModel();
t = Rt.col(3);
Rodrigues(Rt.colRange(0,3), rvec);
hconcat(rvec, t, out);
}
Rodrigues(rvec, newR);
hconcat(K1 * newR, K1 * t, newP);
std::vector<bool> inliers_mask(points_size);
quality->getInliers(newP, inliers_mask);
ransac_output = RansacOutput::create(out, inliers_mask, 0,0,0,0,0,0);
}
return true;
}
return false;
}
2020-11-11 06:54:01 +08:00
}}