opencv/modules/dnn/perf/perf_layer.cpp

417 lines
11 KiB
C++
Raw Normal View History

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
namespace opencv_test {
struct Layer_Slice : public TestBaseWithParam<tuple<Backend, Target> >
{
template<int DIMS>
void test_slice(const int* inputShape, const int* begin, const int* end)
{
int backendId = get<0>(GetParam());
int targetId = get<1>(GetParam());
Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0));
for (int i = 0; i < (int)input.total(); ++i)
input.ptr<float>()[i] = (float)(i & 4095);
std::vector<Range> range(DIMS);
for (int i = 0; i < DIMS; ++i)
range[i] = Range(begin[i], end[i]);
Net net;
LayerParams lp;
lp.type = "Slice";
lp.name = "testLayer";
lp.set("begin", DictValue::arrayInt<int*>((int*)&begin[0], DIMS));
lp.set("end", DictValue::arrayInt<int*>((int*)&end[0], DIMS));
net.addLayerToPrev(lp.name, lp.type, lp);
// warmup
{
net.setInput(input);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat out = net.forward();
EXPECT_GT(cv::norm(out, NORM_INF), 0);
#if 0
//normAssert(out, input(range));
cout << input(range).clone().reshape(1, 1) << endl;
cout << out.reshape(1, 1) << endl;
#endif
}
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
};
struct Layer_NaryEltwise : public TestBaseWithParam<tuple<Backend, Target> >
{
void test_layer(const std::vector<int>& a_shape, const std::vector<int>& b_shape, const String op, bool isRef = false)
{
int backendId = get<0>(GetParam());
int targetId = get<1>(GetParam());
Mat a(a_shape, CV_32FC1);
Mat b(b_shape, CV_32FC1);
Scalar mean = 0.f;
Scalar std = 1.f;
randn(a, mean, std);
randn(b, mean, std);
Net net;
LayerParams lp;
if (isRef)
lp.type = "Eltwise";
else
lp.type = "NaryEltwise";
lp.name = "testLayer";
lp.set("operation", op);
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 1, id, 1);
// warmup
{
std::vector<String> inpNames(2);
inpNames[0] = "a";
inpNames[1] = "b";
net.setInputsNames(inpNames);
net.setInput(a, inpNames[0]);
net.setInput(b, inpNames[1]);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat out = net.forward();
}
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
int N = 8;
int C = 256;
int H = 128;
int W = 100;
};
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_add)
{
test_layer({N, C, H, W}, {N, C, H, W}, "add");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_div)
{
test_layer({N, C, H, W}, {N, C, H, W}, "div");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_div)
{
test_layer({N, C, H, W}, {N, C, H, W}, "div", true);
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_equal)
{
test_layer({N, C, H, W}, {N, C, H, W}, "equal");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_greater)
{
test_layer({N, C, H, W}, {N, C, H, W}, "greater");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_less)
{
test_layer({N, C, H, W}, {N, C, H, W}, "less");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_max)
{
test_layer({N, C, H, W}, {N, C, H, W}, "max");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_max)
{
test_layer({N, C, H, W}, {N, C, H, W}, "max", true);
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_mean)
{
test_layer({N, C, H, W}, {N, C, H, W}, "mean");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_min)
{
test_layer({N, C, H, W}, {N, C, H, W}, "min");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_min)
{
test_layer({N, C, H, W}, {N, C, H, W}, "min", true);
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_mul)
{
test_layer({N, C, H, W}, {N, C, H, W}, "mul");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_mul)
{
test_layer({N, C, H, W}, {N, C, H, W}, "prod", true);
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_pow)
{
test_layer({N, C, H, W}, {N, C, H, W}, "pow");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_sub)
{
test_layer({N, C, H, W}, {N, C, H, W}, "sub");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_sum)
{
test_layer({N, C, H, W}, {N, C, H, W}, "sum");
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_sum)
{
test_layer({N, C, H, W}, {N, C, H, W}, "sum", true);
}
PERF_TEST_P_(Layer_NaryEltwise, NCHW_C_sum)
{
test_layer({N, C, H, W}, {C, 1, 1}, "sum");
}
PERF_TEST_P_(Layer_NaryEltwise, NHWC_C)
{
test_layer({N, H, W, C}, {1, C}, "sum");
}
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_1)
{
const int inputShape[4] = {1, 64, 104, 104};
const int begin[] = {0, 32, 0, 0};
const int end[] = {1, 64, 104, 104};
test_slice<4>(inputShape, begin, end);
}
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_2)
{
const int inputShape[4] = {1, 128, 52, 52};
const int begin[] = {0, 64, 0, 0};
const int end[] = {1, 128, 52, 52};
test_slice<4>(inputShape, begin, end);
}
PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_3)
{
const int inputShape[4] = {1, 256, 26, 26};
const int begin[] = {0, 128, 0, 0};
const int end[] = {1, 256, 26, 26};
test_slice<4>(inputShape, begin, end);
}
PERF_TEST_P_(Layer_Slice, FastNeuralStyle_eccv16)
{
const int inputShape[4] = {1, 128, 80, 100};
const int begin[] = {0, 0, 2, 2};
const int end[] = {1, 128, 76, 96};
test_slice<4>(inputShape, begin, end);
}
struct Layer_Scatter : public TestBaseWithParam<tuple<Backend, Target> >
{
void test_layer(const std::vector<int>& shape, const String reduction = "none", int axis = 0)
{
int backendId = get<0>(GetParam());
int targetId = get<1>(GetParam());
Mat data(shape, CV_32FC1);
Mat indices(shape, CV_32FC1);
Mat updates(shape, CV_32FC1);
Scalar mean = 0.f;
Scalar std = 1.f;
randn(data, mean, std);
randu(indices, 0, shape[axis]);
randn(updates, mean, std);
indices.convertTo(indices, CV_32SC1, 1, -1);
Net net;
LayerParams lp;
lp.type = "Scatter";
lp.name = "testLayer";
lp.set("reduction", reduction);
lp.set("axis", axis);
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 0, id, 0);
net.connect(0, 1, id, 1);
net.connect(0, 2, id, 2);
// warmup
{
std::vector<String> inpNames(3);
inpNames[0] = "data";
inpNames[1] = "indices";
inpNames[2] = "updates";
net.setInputsNames(inpNames);
net.setInput(data, inpNames[0]);
net.setInput(indices, inpNames[1]);
net.setInput(updates, inpNames[2]);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat out = net.forward();
}
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
int N = 8;
int C = 256;
int H = 128;
int W = 100;
};
PERF_TEST_P_(Layer_Scatter, DISABLED_Scatter)
{
test_layer({N, C, H, W});
}
PERF_TEST_P_(Layer_Scatter, DISABLED_Scatter_add)
{
test_layer({N, C, H, W}, "add");
}
struct Layer_ScatterND : public TestBaseWithParam<tuple<Backend, Target> >
{
void test_layer(const std::vector<int>& shape, const String reduction = "none")
{
int backendId = get<0>(GetParam());
int targetId = get<1>(GetParam());
std::vector<int> indices_shape(shape);
indices_shape.push_back(int(shape.size()));
Mat data(shape, CV_32FC1);
Mat indices(indices_shape, CV_32FC1);
Mat updates(shape, CV_32FC1);
Scalar mean = 0.f;
Scalar std = 1.f;
randn(data, mean, std);
randn(updates, mean, std);
// initialize the indices with index tuples like [0...N, 0...C, 0...H, 0...W]
std::vector<int> current_index_tuple(shape.size());
int total = data.total();
std::vector<int> indices_step;
for (int i = 0; i < indices.dims; i++)
{
int step = indices.step.p[i] / sizeof(float);
indices_step.push_back(step);
}
int t, j, idx, offset_at_idx, offset;
for (int i = 0; i < total; i++)
{
t = i;
for (j = shape.size() - 1; j >= 0; j--)
{
idx = t / shape[j];
offset_at_idx = (int)(t - idx * shape[j]);
current_index_tuple[j] = offset_at_idx;
t = idx;
}
offset = 0;
for (j = 0; j < shape.size(); j++)
offset += current_index_tuple[j] * indices_step[j];
for (j = 0; j < shape.size(); j++)
indices.at<float>(offset + j) = current_index_tuple[j];
}
Net net;
LayerParams lp;
lp.type = "ScatterND";
lp.name = "testLayer";
lp.set("reduction", reduction);
int id = net.addLayerToPrev(lp.name, lp.type, lp);
net.connect(0, 0, id, 0);
net.connect(0, 1, id, 1);
net.connect(0, 2, id, 2);
// warmup
{
std::vector<String> inpNames(3);
inpNames[0] = "data";
inpNames[1] = "indices";
inpNames[2] = "updates";
net.setInputsNames(inpNames);
net.setInput(data, inpNames[0]);
net.setInput(indices, inpNames[1]);
net.setInput(updates, inpNames[2]);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat out = net.forward();
}
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
int N = 8;
int C = 256;
int H = 128;
int W = 100;
};
PERF_TEST_P_(Layer_ScatterND, DISABLED_ScatterND)
{
test_layer({N, C, H ,W});
}
PERF_TEST_P_(Layer_ScatterND, DISABLED_ScatterND_add)
{
test_layer({N, C, H , W}, "add");
}
INSTANTIATE_TEST_CASE_P(/**/, Layer_Slice, dnnBackendsAndTargets(false, false));
INSTANTIATE_TEST_CASE_P(/**/, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
INSTANTIATE_TEST_CASE_P(/**/, Layer_Scatter, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
INSTANTIATE_TEST_CASE_P(/**/, Layer_ScatterND, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
} // namespace