mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
386 lines
14 KiB
Plaintext
386 lines
14 KiB
Plaintext
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or bpied warranties, including, but not limited to, the bpied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "opencv2/gpu/device/common.hpp"
|
||
|
|
||
|
namespace cv { namespace gpu { namespace device
|
||
|
{
|
||
|
namespace imgproc
|
||
|
{
|
||
|
// Utility function to extract unsigned chars from an unsigned integer
|
||
|
__device__ uchar4 int_to_uchar4(unsigned int in)
|
||
|
{
|
||
|
uchar4 bytes;
|
||
|
bytes.x = (in && 0x000000ff) >> 0;
|
||
|
bytes.y = (in && 0x0000ff00) >> 8;
|
||
|
bytes.z = (in && 0x00ff0000) >> 16;
|
||
|
bytes.w = (in && 0xff000000) >> 24;
|
||
|
return bytes;
|
||
|
}
|
||
|
|
||
|
__global__ void shfl_integral_horizontal(const PtrStep_<uint4> img, PtrStep_<uint4> integral)
|
||
|
{
|
||
|
#if __CUDA_ARCH__ >= 300
|
||
|
__shared__ int sums[128];
|
||
|
|
||
|
const int id = threadIdx.x;
|
||
|
const int lane_id = id % warpSize;
|
||
|
const int warp_id = id / warpSize;
|
||
|
|
||
|
const uint4 data = img(blockIdx.x, id);
|
||
|
|
||
|
const uchar4 a = int_to_uchar4(data.x);
|
||
|
const uchar4 b = int_to_uchar4(data.y);
|
||
|
const uchar4 c = int_to_uchar4(data.z);
|
||
|
const uchar4 d = int_to_uchar4(data.w);
|
||
|
|
||
|
int result[16];
|
||
|
|
||
|
result[0] = a.x;
|
||
|
result[1] = result[0] + a.y;
|
||
|
result[2] = result[1] + a.z;
|
||
|
result[3] = result[2] + a.w;
|
||
|
|
||
|
result[4] = result[3] + b.x;
|
||
|
result[5] = result[4] + b.y;
|
||
|
result[6] = result[5] + b.z;
|
||
|
result[7] = result[6] + b.w;
|
||
|
|
||
|
result[8] = result[7] + c.x;
|
||
|
result[9] = result[8] + c.y;
|
||
|
result[10] = result[9] + c.z;
|
||
|
result[11] = result[10] + c.w;
|
||
|
|
||
|
result[12] = result[11] + d.x;
|
||
|
result[13] = result[12] + d.y;
|
||
|
result[14] = result[13] + d.z;
|
||
|
result[15] = result[14] + d.w;
|
||
|
|
||
|
int sum = result[15];
|
||
|
|
||
|
// the prefix sum for each thread's 16 value is computed,
|
||
|
// now the final sums (result[15]) need to be shared
|
||
|
// with the other threads and add. To do this,
|
||
|
// the __shfl_up() instruction is used and a shuffle scan
|
||
|
// operation is performed to distribute the sums to the correct
|
||
|
// threads
|
||
|
#pragma unroll
|
||
|
for (int i = 1; i < 32; i *= 2)
|
||
|
{
|
||
|
const int n = __shfl_up(sum, i, 32);
|
||
|
|
||
|
if (lane_id >= i)
|
||
|
{
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < 16; ++i)
|
||
|
result[i] += n;
|
||
|
|
||
|
sum += n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Now the final sum for the warp must be shared
|
||
|
// between warps. This is done by each warp
|
||
|
// having a thread store to shared memory, then
|
||
|
// having some other warp load the values and
|
||
|
// compute a prefix sum, again by using __shfl_up.
|
||
|
// The results are uniformly added back to the warps.
|
||
|
// last thread in the warp holding sum of the warp
|
||
|
// places that in shared
|
||
|
if (threadIdx.x % warpSize == warpSize - 1)
|
||
|
sums[warp_id] = result[15];
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
if (warp_id == 0)
|
||
|
{
|
||
|
int warp_sum = sums[lane_id];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 1; i <= 32; i *= 2)
|
||
|
{
|
||
|
const int n = __shfl_up(warp_sum, i, 32);
|
||
|
|
||
|
if (lane_id >= i)
|
||
|
warp_sum += n;
|
||
|
}
|
||
|
|
||
|
sums[lane_id] = warp_sum;
|
||
|
}
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
int blockSum = 0;
|
||
|
|
||
|
// fold in unused warp
|
||
|
if (warp_id > 0)
|
||
|
{
|
||
|
blockSum = sums[warp_id - 1];
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < 16; ++i)
|
||
|
result[i] += blockSum;
|
||
|
}
|
||
|
|
||
|
// assemble result
|
||
|
// Each thread has 16 values to write, which are
|
||
|
// now integer data (to avoid overflow). Instead of
|
||
|
// each thread writing consecutive uint4s, the
|
||
|
// approach shown here experiments using
|
||
|
// the shuffle command to reformat the data
|
||
|
// inside the registers so that each thread holds
|
||
|
// consecutive data to be written so larger contiguous
|
||
|
// segments can be assembled for writing.
|
||
|
|
||
|
/*
|
||
|
For example data that needs to be written as
|
||
|
|
||
|
GMEM[16] <- x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3 w0 w1 w2 w3
|
||
|
but is stored in registers (r0..r3), in four threads (0..3) as:
|
||
|
|
||
|
threadId 0 1 2 3
|
||
|
r0 x0 y0 z0 w0
|
||
|
r1 x1 y1 z1 w1
|
||
|
r2 x2 y2 z2 w2
|
||
|
r3 x3 y3 z3 w3
|
||
|
|
||
|
after apply __shfl_xor operations to move data between registers r1..r3:
|
||
|
|
||
|
threadId 00 01 10 11
|
||
|
x0 y0 z0 w0
|
||
|
xor(01)->y1 x1 w1 z1
|
||
|
xor(10)->z2 w2 x2 y2
|
||
|
xor(11)->w3 z3 y3 x3
|
||
|
|
||
|
and now x0..x3, and z0..z3 can be written out in order by all threads.
|
||
|
|
||
|
In the current code, each register above is actually representing
|
||
|
four integers to be written as uint4's to GMEM.
|
||
|
*/
|
||
|
|
||
|
result[4] = __shfl_xor(result[4] , 1, 32);
|
||
|
result[5] = __shfl_xor(result[5] , 1, 32);
|
||
|
result[6] = __shfl_xor(result[6] , 1, 32);
|
||
|
result[7] = __shfl_xor(result[7] , 1, 32);
|
||
|
|
||
|
result[8] = __shfl_xor(result[8] , 2, 32);
|
||
|
result[9] = __shfl_xor(result[9] , 2, 32);
|
||
|
result[10] = __shfl_xor(result[10], 2, 32);
|
||
|
result[11] = __shfl_xor(result[11], 2, 32);
|
||
|
|
||
|
result[12] = __shfl_xor(result[12], 3, 32);
|
||
|
result[13] = __shfl_xor(result[13], 3, 32);
|
||
|
result[14] = __shfl_xor(result[14], 3, 32);
|
||
|
result[15] = __shfl_xor(result[15], 3, 32);
|
||
|
|
||
|
uint4* integral_row = integral.ptr(blockIdx.x);
|
||
|
uint4 output;
|
||
|
|
||
|
///////
|
||
|
|
||
|
if (threadIdx.x % 4 == 0)
|
||
|
output = make_uint4(result[0], result[1], result[2], result[3]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 1)
|
||
|
output = make_uint4(result[4], result[5], result[6], result[7]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 2)
|
||
|
output = make_uint4(result[8], result[9], result[10], result[11]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 3)
|
||
|
output = make_uint4(result[12], result[13], result[14], result[15]);
|
||
|
|
||
|
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16] = output;
|
||
|
|
||
|
///////
|
||
|
|
||
|
if (threadIdx.x % 4 == 2)
|
||
|
output = make_uint4(result[0], result[1], result[2], result[3]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 3)
|
||
|
output = make_uint4(result[4], result[5], result[6], result[7]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 0)
|
||
|
output = make_uint4(result[8], result[9], result[10], result[11]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 1)
|
||
|
output = make_uint4(result[12], result[13], result[14], result[15]);
|
||
|
|
||
|
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 8] = output;
|
||
|
|
||
|
// continuning from the above example,
|
||
|
// this use of __shfl_xor() places the y0..y3 and w0..w3 data
|
||
|
// in order.
|
||
|
|
||
|
#pragma unroll
|
||
|
for (int i = 0; i < 16; ++i)
|
||
|
result[i] = __shfl_xor(result[i], 1, 32);
|
||
|
|
||
|
if (threadIdx.x % 4 == 0)
|
||
|
output = make_uint4(result[0], result[1], result[2], result[3]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 1)
|
||
|
output = make_uint4(result[4], result[5], result[6], result[7]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 2)
|
||
|
output = make_uint4(result[8], result[9], result[10], result[11]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 3)
|
||
|
output = make_uint4(result[12], result[13], result[14], result[15]);
|
||
|
|
||
|
integral_row[threadIdx.x % 4 + (threadIdx.x / 4) * 16 + 4] = output;
|
||
|
|
||
|
///////
|
||
|
|
||
|
if (threadIdx.x % 4 == 2)
|
||
|
output = make_uint4(result[0], result[1], result[2], result[3]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 3)
|
||
|
output = make_uint4(result[4], result[5], result[6], result[7]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 0)
|
||
|
output = make_uint4(result[8], result[9], result[10], result[11]);
|
||
|
|
||
|
if (threadIdx.x % 4 == 1)
|
||
|
output = make_uint4(result[12], result[13], result[14], result[15]);
|
||
|
|
||
|
integral_row[(threadIdx.x + 2) % 4 + (threadIdx.x / 4) * 16 + 12] = output;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// This kernel computes columnwise prefix sums. When the data input is
|
||
|
// the row sums from above, this completes the integral image.
|
||
|
// The approach here is to have each block compute a local set of sums.
|
||
|
// First , the data covered by the block is loaded into shared memory,
|
||
|
// then instead of performing a sum in shared memory using __syncthreads
|
||
|
// between stages, the data is reformatted so that the necessary sums
|
||
|
// occur inside warps and the shuffle scan operation is used.
|
||
|
// The final set of sums from the block is then propgated, with the block
|
||
|
// computing "down" the image and adding the running sum to the local
|
||
|
// block sums.
|
||
|
__global__ void shfl_integral_vertical(DevMem2D_<unsigned int> integral)
|
||
|
{
|
||
|
#if __CUDA_ARCH__ >= 300
|
||
|
__shared__ unsigned int sums[32][9];
|
||
|
|
||
|
const int tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
||
|
const int lane_id = tidx % 8;
|
||
|
|
||
|
if (tidx >= integral.cols)
|
||
|
return;
|
||
|
|
||
|
sums[threadIdx.x][threadIdx.y] = 0;
|
||
|
__syncthreads();
|
||
|
|
||
|
unsigned int stepSum = 0;
|
||
|
|
||
|
for (int y = threadIdx.y; y < integral.rows; y += blockDim.y)
|
||
|
{
|
||
|
unsigned int* p = integral.ptr(y) + tidx;
|
||
|
|
||
|
unsigned int sum = *p;
|
||
|
|
||
|
sums[threadIdx.x][threadIdx.y] = sum;
|
||
|
__syncthreads();
|
||
|
|
||
|
// place into SMEM
|
||
|
// shfl scan reduce the SMEM, reformating so the column
|
||
|
// sums are computed in a warp
|
||
|
// then read out properly
|
||
|
const int j = threadIdx.x % 8;
|
||
|
const int k = threadIdx.x / 8 + threadIdx.y * 4;
|
||
|
|
||
|
int partial_sum = sums[k][j];
|
||
|
|
||
|
for (int i = 1; i <= 8; i *= 2)
|
||
|
{
|
||
|
int n = __shfl_up(partial_sum, i, 32);
|
||
|
|
||
|
if (lane_id >= i)
|
||
|
partial_sum += n;
|
||
|
}
|
||
|
|
||
|
sums[k][j] = partial_sum;
|
||
|
__syncthreads();
|
||
|
|
||
|
if (threadIdx.y > 0)
|
||
|
sum += sums[threadIdx.x][threadIdx.y - 1];
|
||
|
|
||
|
sum += stepSum;
|
||
|
stepSum += sums[threadIdx.x][blockDim.y - 1];
|
||
|
|
||
|
__syncthreads();
|
||
|
|
||
|
*p = sum;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void shfl_integral_gpu(DevMem2Db img, DevMem2D_<unsigned int> integral, cudaStream_t stream)
|
||
|
{
|
||
|
{
|
||
|
// each thread handles 16 values, use 1 block/row
|
||
|
const int block = img.cols / 16;
|
||
|
|
||
|
// launch 1 block / row
|
||
|
const int grid = img.rows;
|
||
|
|
||
|
cudaSafeCall( cudaFuncSetCacheConfig(shfl_integral_horizontal, cudaFuncCachePreferL1) );
|
||
|
|
||
|
shfl_integral_horizontal<<<grid, block, 0, stream>>>((DevMem2D_<uint4>) img, (DevMem2D_<uint4>) integral);
|
||
|
cudaSafeCall( cudaGetLastError() );
|
||
|
}
|
||
|
|
||
|
{
|
||
|
const dim3 block(32, 8);
|
||
|
const dim3 grid(divUp(integral.cols, block.x), 1);
|
||
|
|
||
|
shfl_integral_vertical<<<grid, block, 0, stream>>>(integral);
|
||
|
cudaSafeCall( cudaGetLastError() );
|
||
|
}
|
||
|
|
||
|
if (stream == 0)
|
||
|
cudaSafeCall( cudaDeviceSynchronize() );
|
||
|
}
|
||
|
}
|
||
|
}}}
|