2012-05-22 18:29:58 +08:00
|
|
|
#include "perf_cpu_precomp.hpp"
|
2012-05-22 16:29:08 +08:00
|
|
|
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
|
|
// GoodFeaturesToTrack
|
|
|
|
|
2012-05-23 20:58:01 +08:00
|
|
|
IMPLEMENT_PARAM_CLASS(MinDistance, double)
|
|
|
|
|
|
|
|
GPU_PERF_TEST(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance)
|
2012-05-22 16:29:08 +08:00
|
|
|
{
|
|
|
|
double minDistance = GET_PARAM(1);
|
|
|
|
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::Mat image = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(image.empty());
|
2012-05-22 16:29:08 +08:00
|
|
|
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::Mat corners;
|
2012-05-22 16:29:08 +08:00
|
|
|
|
2012-05-23 20:58:01 +08:00
|
|
|
cv::goodFeaturesToTrack(image, corners, 8000, 0.01, minDistance);
|
|
|
|
|
2012-05-22 16:29:08 +08:00
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::goodFeaturesToTrack(image, corners, 8000, 0.01, minDistance);
|
2012-05-22 16:29:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-05-23 20:58:01 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, testing::Combine(
|
|
|
|
ALL_DEVICES,
|
|
|
|
testing::Values(MinDistance(0.0), MinDistance(3.0))));
|
2012-05-22 16:29:08 +08:00
|
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
|
|
// PyrLKOpticalFlowSparse
|
|
|
|
|
2012-05-23 20:58:01 +08:00
|
|
|
IMPLEMENT_PARAM_CLASS(GraySource, bool)
|
|
|
|
IMPLEMENT_PARAM_CLASS(Points, int)
|
|
|
|
IMPLEMENT_PARAM_CLASS(WinSize, int)
|
2012-06-18 14:49:10 +08:00
|
|
|
IMPLEMENT_PARAM_CLASS(Levels, int)
|
|
|
|
IMPLEMENT_PARAM_CLASS(Iters, int)
|
2012-05-23 20:58:01 +08:00
|
|
|
|
2012-06-18 14:49:10 +08:00
|
|
|
GPU_PERF_TEST(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, GraySource, Points, WinSize, Levels, Iters)
|
2012-05-22 16:29:08 +08:00
|
|
|
{
|
|
|
|
bool useGray = GET_PARAM(1);
|
|
|
|
int points = GET_PARAM(2);
|
|
|
|
int win_size = GET_PARAM(3);
|
2012-06-18 14:49:10 +08:00
|
|
|
int levels = GET_PARAM(4);
|
|
|
|
int iters = GET_PARAM(5);
|
2012-05-22 16:29:08 +08:00
|
|
|
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::Mat frame0 = readImage("gpu/opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
|
|
|
ASSERT_FALSE(frame0.empty());
|
2012-05-23 20:58:01 +08:00
|
|
|
|
|
|
|
cv::Mat frame1 = readImage("gpu/opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
2012-05-22 18:29:58 +08:00
|
|
|
ASSERT_FALSE(frame1.empty());
|
2012-05-22 16:29:08 +08:00
|
|
|
|
|
|
|
cv::Mat gray_frame;
|
|
|
|
if (useGray)
|
2012-05-22 18:29:58 +08:00
|
|
|
gray_frame = frame0;
|
2012-05-22 16:29:08 +08:00
|
|
|
else
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
|
2012-05-22 16:29:08 +08:00
|
|
|
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::Mat pts;
|
|
|
|
cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0);
|
2012-05-22 16:29:08 +08:00
|
|
|
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::Mat nextPts;
|
|
|
|
cv::Mat status;
|
2012-05-22 16:29:08 +08:00
|
|
|
|
2012-06-18 14:49:10 +08:00
|
|
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
|
|
|
|
cv::Size(win_size, win_size), levels - 1,
|
|
|
|
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
|
|
|
|
|
|
|
|
declare.time(20.0);
|
2012-05-23 20:58:01 +08:00
|
|
|
|
2012-05-22 16:29:08 +08:00
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
2012-06-18 14:49:10 +08:00
|
|
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
|
|
|
|
cv::Size(win_size, win_size), levels - 1,
|
|
|
|
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
|
2012-05-22 16:29:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-05-22 18:29:58 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, testing::Combine(
|
2012-05-23 20:58:01 +08:00
|
|
|
ALL_DEVICES,
|
|
|
|
testing::Values(GraySource(true), GraySource(false)),
|
|
|
|
testing::Values(Points(1000), Points(2000), Points(4000), Points(8000)),
|
2012-06-18 14:49:10 +08:00
|
|
|
testing::Values(WinSize(9), WinSize(13), WinSize(17), WinSize(21)),
|
|
|
|
testing::Values(Levels(1), Levels(2), Levels(3)),
|
|
|
|
testing::Values(Iters(1), Iters(10), Iters(30))));
|
2012-05-22 16:29:08 +08:00
|
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
|
|
// FarnebackOpticalFlowTest
|
|
|
|
|
|
|
|
GPU_PERF_TEST_1(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo)
|
|
|
|
{
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::Mat frame0 = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(frame0.empty());
|
2012-05-23 20:58:01 +08:00
|
|
|
|
|
|
|
cv::Mat frame1 = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE);
|
2012-05-22 18:29:58 +08:00
|
|
|
ASSERT_FALSE(frame1.empty());
|
2012-05-22 16:29:08 +08:00
|
|
|
|
2012-05-22 18:29:58 +08:00
|
|
|
cv::Mat flow;
|
2012-05-22 16:29:08 +08:00
|
|
|
|
2012-05-22 18:29:58 +08:00
|
|
|
int numLevels = 5;
|
|
|
|
double pyrScale = 0.5;
|
|
|
|
int winSize = 13;
|
|
|
|
int numIters = 10;
|
|
|
|
int polyN = 5;
|
|
|
|
double polySigma = 1.1;
|
|
|
|
int flags = 0;
|
|
|
|
|
2012-05-23 20:58:01 +08:00
|
|
|
cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
|
|
|
|
|
|
|
|
declare.time(10);
|
|
|
|
|
2012-05-22 16:29:08 +08:00
|
|
|
TEST_CYCLE()
|
|
|
|
{
|
2012-06-18 14:49:10 +08:00
|
|
|
cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
|
2012-05-22 16:29:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest, ALL_DEVICES);
|
|
|
|
|
2012-06-05 21:32:04 +08:00
|
|
|
//////////////////////////////////////////////////////
|
|
|
|
// FGDStatModel
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
template<> void Ptr<CvBGStatModel>::delete_obj()
|
|
|
|
{
|
|
|
|
cvReleaseBGStatModel(&obj);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
GPU_PERF_TEST(FGDStatModel, cv::gpu::DeviceInfo, std::string)
|
|
|
|
{
|
|
|
|
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
|
|
|
|
|
|
|
|
cv::VideoCapture cap(inputFile);
|
|
|
|
ASSERT_TRUE(cap.isOpened());
|
|
|
|
|
|
|
|
cv::Mat frame;
|
|
|
|
cap >> frame;
|
|
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
|
|
|
|
IplImage ipl_frame = frame;
|
|
|
|
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
|
|
|
|
|
|
|
|
declare.time(60);
|
|
|
|
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
{
|
|
|
|
cap >> frame;
|
|
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
|
|
|
|
ipl_frame = frame;
|
|
|
|
|
|
|
|
startTimer();
|
|
|
|
next();
|
|
|
|
|
|
|
|
cvUpdateBGStatModel(&ipl_frame, model);
|
|
|
|
|
|
|
|
stopTimer();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, FGDStatModel, testing::Combine(
|
|
|
|
ALL_DEVICES,
|
|
|
|
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi"))));
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
|
|
// VideoWriter
|
|
|
|
|
|
|
|
#ifdef WIN32
|
|
|
|
|
|
|
|
GPU_PERF_TEST(VideoWriter, cv::gpu::DeviceInfo, std::string)
|
|
|
|
{
|
|
|
|
const double FPS = 25.0;
|
|
|
|
|
|
|
|
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
|
|
|
|
std::string outputFile = inputFile.substr(0, inputFile.find('.')) + "_test.avi";
|
|
|
|
|
|
|
|
cv::VideoCapture reader(inputFile);
|
|
|
|
ASSERT_TRUE( reader.isOpened() );
|
|
|
|
|
|
|
|
cv::VideoWriter writer;
|
|
|
|
|
|
|
|
cv::Mat frame;
|
|
|
|
|
|
|
|
declare.time(30);
|
|
|
|
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
{
|
|
|
|
reader >> frame;
|
|
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
|
|
|
|
if (!writer.isOpened())
|
2012-06-05 22:16:57 +08:00
|
|
|
writer.open(outputFile, CV_FOURCC('X', 'V', 'I', 'D'), FPS, frame.size());
|
2012-06-05 21:32:04 +08:00
|
|
|
|
|
|
|
startTimer(); next();
|
|
|
|
writer.write(frame);
|
|
|
|
stopTimer();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, VideoWriter, testing::Combine(
|
|
|
|
ALL_DEVICES,
|
|
|
|
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi"))));
|
|
|
|
|
|
|
|
#endif // WIN32
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
|
|
// VideoReader
|
|
|
|
|
|
|
|
GPU_PERF_TEST(VideoReader, cv::gpu::DeviceInfo, std::string)
|
|
|
|
{
|
|
|
|
std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1));
|
|
|
|
|
|
|
|
cv::VideoCapture reader(inputFile);
|
|
|
|
ASSERT_TRUE( reader.isOpened() );
|
|
|
|
|
|
|
|
cv::Mat frame;
|
|
|
|
|
|
|
|
reader >> frame;
|
|
|
|
|
|
|
|
declare.time(20);
|
|
|
|
|
|
|
|
TEST_CYCLE_N(10)
|
|
|
|
{
|
|
|
|
reader >> frame;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(Video, VideoReader, testing::Combine(
|
|
|
|
ALL_DEVICES,
|
|
|
|
testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi"))));
|
|
|
|
|
2012-05-22 16:29:08 +08:00
|
|
|
#endif
|