mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
277 lines
7.8 KiB
C++
277 lines
7.8 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// @Authors
|
||
|
// Fangfang Bai, fangfang@multicorewareinc.com
|
||
|
// Jin Ma, jin@multicorewareinc.com
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors as is and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
#include "perf_precomp.hpp"
|
||
|
|
||
|
using namespace perf;
|
||
|
using std::tr1::tuple;
|
||
|
using std::tr1::get;
|
||
|
|
||
|
|
||
|
///////////// MinMax ////////////////////////
|
||
|
|
||
|
typedef Size_MatType MinMaxFixture;
|
||
|
|
||
|
PERF_TEST_P(MinMaxFixture, MinMax,
|
||
|
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
|
||
|
OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
|
||
|
{
|
||
|
const Size_MatType_t params = GetParam();
|
||
|
const Size srcSize = get<0>(params);
|
||
|
const int type = get<1>(params);
|
||
|
|
||
|
Mat src(srcSize, type);
|
||
|
declare.in(src, WARMUP_RNG);
|
||
|
|
||
|
double min_val = std::numeric_limits<double>::max(),
|
||
|
max_val = std::numeric_limits<double>::min();
|
||
|
|
||
|
if (RUN_OCL_IMPL)
|
||
|
{
|
||
|
ocl::oclMat oclSrc(src);
|
||
|
|
||
|
OCL_TEST_CYCLE() cv::ocl::minMax(oclSrc, &min_val, &max_val);
|
||
|
|
||
|
ASSERT_GE(max_val, min_val);
|
||
|
SANITY_CHECK(min_val);
|
||
|
SANITY_CHECK(max_val);
|
||
|
}
|
||
|
else if (RUN_PLAIN_IMPL)
|
||
|
{
|
||
|
Point min_loc, max_loc;
|
||
|
|
||
|
TEST_CYCLE() cv::minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc);
|
||
|
|
||
|
ASSERT_GE(max_val, min_val);
|
||
|
SANITY_CHECK(min_val);
|
||
|
SANITY_CHECK(max_val);
|
||
|
}
|
||
|
else
|
||
|
OCL_PERF_ELSE
|
||
|
}
|
||
|
|
||
|
///////////// MinMaxLoc ////////////////////////
|
||
|
|
||
|
typedef Size_MatType MinMaxLocFixture;
|
||
|
|
||
|
OCL_PERF_TEST_P(MinMaxLocFixture, MinMaxLoc,
|
||
|
::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
|
||
|
{
|
||
|
const Size_MatType_t params = GetParam();
|
||
|
const Size srcSize = get<0>(params);
|
||
|
const int type = get<1>(params);
|
||
|
|
||
|
Mat src(srcSize, type);
|
||
|
randu(src, 0, 1);
|
||
|
declare.in(src);
|
||
|
|
||
|
double min_val = 0.0, max_val = 0.0;
|
||
|
Point min_loc, max_loc;
|
||
|
|
||
|
if (RUN_OCL_IMPL)
|
||
|
{
|
||
|
ocl::oclMat oclSrc(src);
|
||
|
|
||
|
OCL_TEST_CYCLE() cv::ocl::minMaxLoc(oclSrc, &min_val, &max_val, &min_loc, &max_loc);
|
||
|
|
||
|
ASSERT_GE(max_val, min_val);
|
||
|
SANITY_CHECK(min_val);
|
||
|
SANITY_CHECK(max_val);
|
||
|
}
|
||
|
else if (RUN_PLAIN_IMPL)
|
||
|
{
|
||
|
TEST_CYCLE() cv::minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc);
|
||
|
|
||
|
ASSERT_GE(max_val, min_val);
|
||
|
SANITY_CHECK(min_val);
|
||
|
SANITY_CHECK(max_val);
|
||
|
}
|
||
|
else
|
||
|
OCL_PERF_ELSE
|
||
|
}
|
||
|
|
||
|
///////////// Sum ////////////////////////
|
||
|
|
||
|
typedef Size_MatType SumFixture;
|
||
|
|
||
|
OCL_PERF_TEST_P(SumFixture, Sum,
|
||
|
::testing::Combine(OCL_TEST_SIZES,
|
||
|
OCL_TEST_TYPES))
|
||
|
{
|
||
|
const Size_MatType_t params = GetParam();
|
||
|
const Size srcSize = get<0>(params);
|
||
|
const int type = get<1>(params);
|
||
|
|
||
|
Mat src(srcSize, type);
|
||
|
Scalar result;
|
||
|
randu(src, 0, 60);
|
||
|
declare.in(src);
|
||
|
|
||
|
if (RUN_OCL_IMPL)
|
||
|
{
|
||
|
ocl::oclMat oclSrc(src);
|
||
|
|
||
|
OCL_TEST_CYCLE() result = cv::ocl::sum(oclSrc);
|
||
|
|
||
|
SANITY_CHECK(result, 1e-6, ERROR_RELATIVE);
|
||
|
}
|
||
|
else if (RUN_PLAIN_IMPL)
|
||
|
{
|
||
|
TEST_CYCLE() result = cv::sum(src);
|
||
|
|
||
|
SANITY_CHECK(result, 1e-6, ERROR_RELATIVE);
|
||
|
}
|
||
|
else
|
||
|
OCL_PERF_ELSE
|
||
|
}
|
||
|
|
||
|
///////////// countNonZero ////////////////////////
|
||
|
|
||
|
typedef Size_MatType CountNonZeroFixture;
|
||
|
|
||
|
OCL_PERF_TEST_P(CountNonZeroFixture, CountNonZero,
|
||
|
::testing::Combine(OCL_TEST_SIZES,
|
||
|
OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
|
||
|
{
|
||
|
const Size_MatType_t params = GetParam();
|
||
|
const Size srcSize = get<0>(params);
|
||
|
const int type = get<1>(params);
|
||
|
|
||
|
Mat src(srcSize, type);
|
||
|
int result = 0;
|
||
|
randu(src, 0, 256);
|
||
|
declare.in(src);
|
||
|
|
||
|
if (RUN_OCL_IMPL)
|
||
|
{
|
||
|
ocl::oclMat oclSrc(src);
|
||
|
|
||
|
OCL_TEST_CYCLE() result = cv::ocl::countNonZero(oclSrc);
|
||
|
|
||
|
SANITY_CHECK(result);
|
||
|
}
|
||
|
else if (RUN_PLAIN_IMPL)
|
||
|
{
|
||
|
TEST_CYCLE() result = cv::countNonZero(src);
|
||
|
|
||
|
SANITY_CHECK(result);
|
||
|
}
|
||
|
else
|
||
|
OCL_PERF_ELSE
|
||
|
}
|
||
|
|
||
|
///////////// meanStdDev ////////////////////////
|
||
|
|
||
|
typedef Size_MatType MeanStdDevFixture;
|
||
|
|
||
|
OCL_PERF_TEST_P(MeanStdDevFixture, MeanStdDev,
|
||
|
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES))
|
||
|
{
|
||
|
const Size_MatType_t params = GetParam();
|
||
|
const Size srcSize = get<0>(params);
|
||
|
const int type = get<1>(params);
|
||
|
|
||
|
Mat src(srcSize, type);
|
||
|
Scalar mean, stddev;
|
||
|
randu(src, 0, 256);
|
||
|
declare.in(src);
|
||
|
|
||
|
if (RUN_OCL_IMPL)
|
||
|
{
|
||
|
ocl::oclMat oclSrc(src);
|
||
|
|
||
|
OCL_TEST_CYCLE() cv::ocl::meanStdDev(oclSrc, mean, stddev);
|
||
|
}
|
||
|
else if (RUN_PLAIN_IMPL)
|
||
|
{
|
||
|
TEST_CYCLE() cv::meanStdDev(src, mean, stddev);
|
||
|
}
|
||
|
else
|
||
|
OCL_PERF_ELSE
|
||
|
|
||
|
SANITY_CHECK_NOTHING();
|
||
|
// SANITY_CHECK(mean, 1e-6, ERROR_RELATIVE);
|
||
|
// SANITY_CHECK(stddev, 1e-6, ERROR_RELATIVE);
|
||
|
}
|
||
|
|
||
|
///////////// norm////////////////////////
|
||
|
|
||
|
CV_ENUM(NormType, NORM_INF, NORM_L1, NORM_L2)
|
||
|
|
||
|
typedef std::tr1::tuple<Size, MatType, NormType> NormParams;
|
||
|
typedef TestBaseWithParam<NormParams> NormFixture;
|
||
|
|
||
|
OCL_PERF_TEST_P(NormFixture, Norm,
|
||
|
::testing::Combine(OCL_PERF_ENUM(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3),
|
||
|
OCL_TEST_TYPES, NormType::all()))
|
||
|
{
|
||
|
const NormParams params = GetParam();
|
||
|
const Size srcSize = get<0>(params);
|
||
|
const int type = get<1>(params);
|
||
|
const int normType = get<2>(params);
|
||
|
perf::ERROR_TYPE errorType = type != NORM_INF ? ERROR_RELATIVE : ERROR_ABSOLUTE;
|
||
|
double eps = 1e-5, value;
|
||
|
|
||
|
Mat src1(srcSize, type), src2(srcSize, type);
|
||
|
declare.in(src1, src2, WARMUP_RNG);
|
||
|
|
||
|
if (RUN_OCL_IMPL)
|
||
|
{
|
||
|
ocl::oclMat oclSrc1(src1), oclSrc2(src2);
|
||
|
|
||
|
OCL_TEST_CYCLE() value = cv::ocl::norm(oclSrc1, oclSrc2, normType);
|
||
|
|
||
|
SANITY_CHECK(value, eps, errorType);
|
||
|
}
|
||
|
else if (RUN_PLAIN_IMPL)
|
||
|
{
|
||
|
TEST_CYCLE() value = cv::norm(src1, src2, normType);
|
||
|
|
||
|
SANITY_CHECK(value, eps, errorType);
|
||
|
}
|
||
|
else
|
||
|
OCL_PERF_ELSE
|
||
|
}
|