opencv/modules/core/src/umatrix.cpp

644 lines
17 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
///////////////////////////////// UMat implementation ///////////////////////////////
namespace cv {
// it should be a prime number for the best hash function
enum { UMAT_NLOCKS = 31 };
static Mutex umatLocks[UMAT_NLOCKS];
UMatData::UMatData(const MatAllocator* allocator)
{
prevAllocator = currAllocator = allocator;
urefcount = refcount = 0;
data = origdata = 0;
size = 0;
flags = 0;
handle = 0;
}
void UMatData::lock()
{
umatLocks[(size_t)(void*)this % UMAT_NLOCKS].lock();
}
void UMatData::unlock()
{
umatLocks[(size_t)(void*)this % UMAT_NLOCKS].unlock();
}
MatAllocator* UMat::getStdAllocator()
{
return ocl::getOpenCLAllocator();
}
void swap( UMat& a, UMat& b )
{
std::swap(a.flags, b.flags);
std::swap(a.dims, b.dims);
std::swap(a.rows, b.rows);
std::swap(a.cols, b.cols);
std::swap(a.allocator, b.allocator);
std::swap(a.u, b.u);
std::swap(a.offset, b.offset);
std::swap(a.size.p, b.size.p);
std::swap(a.step.p, b.step.p);
std::swap(a.step.buf[0], b.step.buf[0]);
std::swap(a.step.buf[1], b.step.buf[1]);
if( a.step.p == b.step.buf )
{
a.step.p = a.step.buf;
a.size.p = &a.rows;
}
if( b.step.p == a.step.buf )
{
b.step.p = b.step.buf;
b.size.p = &b.rows;
}
}
static inline void setSize( UMat& m, int _dims, const int* _sz,
const size_t* _steps, bool autoSteps=false )
{
CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM );
if( m.dims != _dims )
{
if( m.step.p != m.step.buf )
{
fastFree(m.step.p);
m.step.p = m.step.buf;
m.size.p = &m.rows;
}
if( _dims > 2 )
{
m.step.p = (size_t*)fastMalloc(_dims*sizeof(m.step.p[0]) + (_dims+1)*sizeof(m.size.p[0]));
m.size.p = (int*)(m.step.p + _dims) + 1;
m.size.p[-1] = _dims;
m.rows = m.cols = -1;
}
}
m.dims = _dims;
if( !_sz )
return;
size_t esz = CV_ELEM_SIZE(m.flags), total = esz;
int i;
for( i = _dims-1; i >= 0; i-- )
{
int s = _sz[i];
CV_Assert( s >= 0 );
m.size.p[i] = s;
if( _steps )
m.step.p[i] = i < _dims-1 ? _steps[i] : esz;
else if( autoSteps )
{
m.step.p[i] = total;
int64 total1 = (int64)total*s;
if( (uint64)total1 != (size_t)total1 )
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
total = (size_t)total1;
}
}
if( _dims == 1 )
{
m.dims = 2;
m.cols = 1;
m.step[1] = esz;
}
}
static void updateContinuityFlag(UMat& m)
{
int i, j;
for( i = 0; i < m.dims; i++ )
{
if( m.size[i] > 1 )
break;
}
for( j = m.dims-1; j > i; j-- )
{
if( m.step[j]*m.size[j] < m.step[j-1] )
break;
}
uint64 t = (uint64)m.step[0]*m.size[0];
if( j <= i && t == (size_t)t )
m.flags |= UMat::CONTINUOUS_FLAG;
else
m.flags &= ~UMat::CONTINUOUS_FLAG;
}
static void finalizeHdr(UMat& m)
{
updateContinuityFlag(m);
int d = m.dims;
if( d > 2 )
m.rows = m.cols = -1;
}
UMat Mat::getUMat(int accessFlags) const
{
UMat hdr;
if(!u)
return hdr;
UMat::getStdAllocator()->allocate(u, accessFlags);
setSize(hdr, dims, size.p, step.p);
finalizeHdr(hdr);
hdr.u = u;
hdr.offset = data - datastart;
return hdr;
}
void UMat::create(int d, const int* _sizes, int _type)
{
int i;
CV_Assert(0 <= d && d <= CV_MAX_DIM && _sizes);
_type = CV_MAT_TYPE(_type);
if( u && (d == dims || (d == 1 && dims <= 2)) && _type == type() )
{
if( d == 2 && rows == _sizes[0] && cols == _sizes[1] )
return;
for( i = 0; i < d; i++ )
if( size[i] != _sizes[i] )
break;
if( i == d && (d > 1 || size[1] == 1))
return;
}
release();
if( d == 0 )
return;
flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
setSize(*this, d, _sizes, 0, true);
offset = 0;
if( total() > 0 )
{
MatAllocator *a = allocator, *a0 = getStdAllocator();
if(!a)
a = a0;
try
{
u = a->allocate(dims, size, _type, step.p);
CV_Assert(u != 0);
}
catch(...)
{
if(a != a0)
u = a0->allocate(dims, size, _type, step.p);
CV_Assert(u != 0);
}
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) );
}
finalizeHdr(*this);
}
void UMat::copySize(const UMat& m)
{
setSize(*this, m.dims, 0, 0);
for( int i = 0; i < dims; i++ )
{
size[i] = m.size[i];
step[i] = m.step[i];
}
}
void UMat::deallocate()
{
u->currAllocator->deallocate(u);
}
UMat::UMat(const UMat& m, const Range& _rowRange, const Range& _colRange)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), u(0), offset(0), size(&rows)
{
CV_Assert( m.dims >= 2 );
if( m.dims > 2 )
{
AutoBuffer<Range> rs(m.dims);
rs[0] = _rowRange;
rs[1] = _colRange;
for( int i = 2; i < m.dims; i++ )
rs[i] = Range::all();
*this = m(rs);
return;
}
*this = m;
if( _rowRange != Range::all() && _rowRange != Range(0,rows) )
{
CV_Assert( 0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows );
rows = _rowRange.size();
offset += step*_rowRange.start;
flags |= SUBMATRIX_FLAG;
}
if( _colRange != Range::all() && _colRange != Range(0,cols) )
{
CV_Assert( 0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols );
cols = _colRange.size();
offset += _colRange.start*elemSize();
flags &= cols < m.cols ? ~CONTINUOUS_FLAG : -1;
flags |= SUBMATRIX_FLAG;
}
if( rows == 1 )
flags |= CONTINUOUS_FLAG;
if( rows <= 0 || cols <= 0 )
{
release();
rows = cols = 0;
}
}
UMat::UMat(const UMat& m, const Rect& roi)
: flags(m.flags), dims(2), rows(roi.height), cols(roi.width),
allocator(m.allocator), u(m.u), offset(m.offset + roi.y*m.step[0]), size(&rows)
{
CV_Assert( m.dims <= 2 );
flags &= roi.width < m.cols ? ~CONTINUOUS_FLAG : -1;
flags |= roi.height == 1 ? CONTINUOUS_FLAG : 0;
size_t esz = CV_ELEM_SIZE(flags);
offset += roi.x*esz;
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols &&
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
if( u )
CV_XADD(&(u->urefcount), 1);
if( roi.width < m.cols || roi.height < m.rows )
flags |= SUBMATRIX_FLAG;
step[0] = m.step[0]; step[1] = esz;
if( rows <= 0 || cols <= 0 )
{
release();
rows = cols = 0;
}
}
UMat::UMat(const UMat& m, const Range* ranges)
: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), u(0), offset(0), size(&rows)
{
int i, d = m.dims;
CV_Assert(ranges);
for( i = 0; i < d; i++ )
{
Range r = ranges[i];
CV_Assert( r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]) );
}
*this = m;
for( i = 0; i < d; i++ )
{
Range r = ranges[i];
if( r != Range::all() && r != Range(0, size.p[i]))
{
size.p[i] = r.end - r.start;
offset += r.start*step.p[i];
flags |= SUBMATRIX_FLAG;
}
}
updateContinuityFlag(*this);
}
UMat UMat::diag(int d) const
{
CV_Assert( dims <= 2 );
UMat m = *this;
size_t esz = elemSize();
int len;
if( d >= 0 )
{
len = std::min(cols - d, rows);
m.offset += esz*d;
}
else
{
len = std::min(rows + d, cols);
m.offset -= step[0]*d;
}
CV_DbgAssert( len > 0 );
m.size[0] = m.rows = len;
m.size[1] = m.cols = 1;
m.step[0] += (len > 1 ? esz : 0);
if( m.rows > 1 )
m.flags &= ~CONTINUOUS_FLAG;
else
m.flags |= CONTINUOUS_FLAG;
if( size() != Size(1,1) )
m.flags |= SUBMATRIX_FLAG;
return m;
}
void UMat::locateROI( Size& wholeSize, Point& ofs ) const
{
CV_Assert( dims <= 2 && step[0] > 0 );
size_t esz = elemSize(), minstep;
ptrdiff_t delta1 = (ptrdiff_t)offset, delta2 = (ptrdiff_t)u->size;
if( delta1 == 0 )
ofs.x = ofs.y = 0;
else
{
ofs.y = (int)(delta1/step[0]);
ofs.x = (int)((delta1 - step[0]*ofs.y)/esz);
CV_DbgAssert( offset == (size_t)(ofs.y*step[0] + ofs.x*esz) );
}
minstep = (ofs.x + cols)*esz;
wholeSize.height = (int)((delta2 - minstep)/step[0] + 1);
wholeSize.height = std::max(wholeSize.height, ofs.y + rows);
wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz);
wholeSize.width = std::max(wholeSize.width, ofs.x + cols);
}
UMat& UMat::adjustROI( int dtop, int dbottom, int dleft, int dright )
{
CV_Assert( dims <= 2 && step[0] > 0 );
Size wholeSize; Point ofs;
size_t esz = elemSize();
locateROI( wholeSize, ofs );
int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width);
offset += (row1 - ofs.y)*step + (col1 - ofs.x)*esz;
rows = row2 - row1; cols = col2 - col1;
size.p[0] = rows; size.p[1] = cols;
if( esz*cols == step[0] || rows == 1 )
flags |= CONTINUOUS_FLAG;
else
flags &= ~CONTINUOUS_FLAG;
return *this;
}
UMat UMat::reshape(int new_cn, int new_rows) const
{
int cn = channels();
UMat hdr = *this;
if( dims > 2 && new_rows == 0 && new_cn != 0 && size[dims-1]*cn % new_cn == 0 )
{
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
hdr.step[dims-1] = CV_ELEM_SIZE(hdr.flags);
hdr.size[dims-1] = hdr.size[dims-1]*cn / new_cn;
return hdr;
}
CV_Assert( dims <= 2 );
if( new_cn == 0 )
new_cn = cn;
int total_width = cols * cn;
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
new_rows = rows * total_width / new_cn;
if( new_rows != 0 && new_rows != rows )
{
int total_size = total_width * rows;
if( !isContinuous() )
CV_Error( CV_BadStep,
"The matrix is not continuous, thus its number of rows can not be changed" );
if( (unsigned)new_rows > (unsigned)total_size )
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
total_width = total_size / new_rows;
if( total_width * new_rows != total_size )
CV_Error( CV_StsBadArg, "The total number of matrix elements "
"is not divisible by the new number of rows" );
hdr.rows = new_rows;
hdr.step[0] = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if( new_width * new_cn != total_width )
CV_Error( CV_BadNumChannels,
"The total width is not divisible by the new number of channels" );
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
hdr.step[1] = CV_ELEM_SIZE(hdr.flags);
return hdr;
}
UMat UMat::diag(const UMat& d)
{
CV_Assert( d.cols == 1 || d.rows == 1 );
int len = d.rows + d.cols - 1;
UMat m(len, len, d.type(), Scalar(0));
UMat md = m.diag();
if( d.cols == 1 )
d.copyTo(md);
else
transpose(d, md);
return m;
}
int UMat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const
{
return (depth() == _depth || _depth <= 0) &&
(isContinuous() || !_requireContinuous) &&
((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) ||
(cols == _elemChannels && channels() == 1))) ||
(dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) &&
(isContinuous() || step.p[1] == step.p[2]*size.p[2])))
? (int)(total()*channels()/_elemChannels) : -1;
}
UMat UMat::cross(InputArray) const
{
CV_Error(CV_StsNotImplemented, "");
return UMat();
}
UMat UMat::reshape(int _cn, int _newndims, const int* _newsz) const
{
if(_newndims == dims)
{
if(_newsz == 0)
return reshape(_cn);
if(_newndims == 2)
return reshape(_cn, _newsz[0]);
}
CV_Error(CV_StsNotImplemented, "");
// TBD
return UMat();
}
Mat UMat::getMat(int accessFlags) const
{
if(!u)
return Mat();
u->currAllocator->map(u, accessFlags);
CV_Assert(u->data != 0);
Mat hdr(dims, size.p, type(), u->data + offset, step.p);
hdr.refcount = &u->refcount;
hdr.u = u;
hdr.datastart = u->data;
hdr.datalimit = hdr.dataend = u->data + u->size;
CV_XADD(hdr.refcount, 1);
return hdr;
}
void* UMat::handle(int accessFlags) const
{
if( !u )
return 0;
// check flags: if CPU copy is newer, copy it back to GPU.
if( u->deviceCopyObsolete() )
{
CV_Assert(u->refcount == 0);
u->currAllocator->unmap(u);
}
else if( u->refcount > 0 && (accessFlags & ACCESS_WRITE) )
{
CV_Error(Error::StsError,
"it's not allowed to access UMat handle for writing "
"while it's mapped; call Mat::release() first for all its mappings");
}
return u->handle;
}
void UMat::ndoffset(size_t* ofs) const
{
// offset = step[0]*ofs[0] + step[1]*ofs[1] + step[2]*ofs[2] + ...;
size_t t = offset;
for( int i = 0; i < dims; i++ )
{
size_t s = step.p[i];
ofs[i] = t / s;
t -= ofs[i]*s;
}
}
void UMat::copyTo(OutputArray _dst) const
{
int dtype = _dst.type();
if( _dst.fixedType() && dtype != type() )
{
CV_Assert( channels() == CV_MAT_CN(dtype) );
convertTo( _dst, dtype );
return;
}
if( empty() )
{
_dst.release();
return;
}
size_t i, sz[CV_MAX_DIM], srcofs[CV_MAX_DIM], dstofs[CV_MAX_DIM];
for( i = 0; i < (size_t)dims; i++ )
sz[i] = size.p[i];
sz[dims-1] *= elemSize();
ndoffset(srcofs);
_dst.create( dims, size, type() );
if( _dst.kind() == _InputArray::UMAT )
{
UMat dst = _dst.getUMat();
void* srchandle = handle(ACCESS_READ);
void* dsthandle = dst.handle(ACCESS_WRITE);
if( srchandle == dsthandle && dst.offset == offset )
return;
ndoffset(dstofs);
CV_Assert(u->currAllocator == dst.u->currAllocator);
u->currAllocator->copy(u, dst.u, dims, sz, srcofs, step.p, dstofs, dst.step.p, false);
}
else
{
Mat dst = _dst.getMat();
u->currAllocator->download(u, dst.data, dims, sz, srcofs, step.p, dst.step.p);
}
}
void UMat::convertTo(OutputArray, int, double, double) const
{
CV_Error(Error::StsNotImplemented, "");
}
UMat& UMat::operator = (const Scalar&)
{
CV_Error(Error::StsNotImplemented, "");
return *this;
}
}
/* End of file. */