opencv/3rdparty/openjpeg/openjp2/ht_dec.c

2648 lines
105 KiB
C
Raw Normal View History

2023-05-25 02:02:11 +08:00
//***************************************************************************/
// This software is released under the 2-Clause BSD license, included
// below.
//
// Copyright (c) 2021, Aous Naman
// Copyright (c) 2021, Kakadu Software Pty Ltd, Australia
// Copyright (c) 2021, The University of New South Wales, Australia
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//***************************************************************************/
// This file is part of the OpenJpeg software implementation.
// File: ht_dec.c
// Author: Aous Naman
// Date: 01 September 2021
//***************************************************************************/
//***************************************************************************/
/** @file ht_dec.c
* @brief implements HTJ2K block decoder
*/
#include <assert.h>
#include <string.h>
#include "opj_includes.h"
#include "t1_ht_luts.h"
/////////////////////////////////////////////////////////////////////////////
// compiler detection
/////////////////////////////////////////////////////////////////////////////
#ifdef _MSC_VER
#define OPJ_COMPILER_MSVC
#elif (defined __GNUC__)
#define OPJ_COMPILER_GNUC
#endif
#if defined(OPJ_COMPILER_MSVC) && defined(_M_ARM64)
#include <arm64_neon.h>
#endif
2023-05-25 02:02:11 +08:00
//************************************************************************/
/** @brief Displays the error message for disabling the decoding of SPP and
* MRP passes
*/
static OPJ_BOOL only_cleanup_pass_is_decoded = OPJ_FALSE;
//************************************************************************/
/** @brief Generates population count (i.e., the number of set bits)
*
* @param [in] val is the value for which population count is sought
*/
static INLINE
OPJ_UINT32 population_count(OPJ_UINT32 val)
{
2023-07-25 16:21:13 +08:00
#if defined(OPJ_COMPILER_MSVC) && (defined(_M_IX86) || defined(_M_AMD64))
2023-05-25 02:02:11 +08:00
return (OPJ_UINT32)__popcnt(val);
#elif defined(OPJ_COMPILER_MSVC) && defined(_M_ARM64)
const __n64 temp = neon_cnt(__uint64ToN64_v(val));
return neon_addv8(temp).n8_i8[0];
2023-05-25 02:02:11 +08:00
#elif (defined OPJ_COMPILER_GNUC)
return (OPJ_UINT32)__builtin_popcount(val);
#else
val -= ((val >> 1) & 0x55555555);
val = (((val >> 2) & 0x33333333) + (val & 0x33333333));
val = (((val >> 4) + val) & 0x0f0f0f0f);
val += (val >> 8);
val += (val >> 16);
return (OPJ_UINT32)(val & 0x0000003f);
#endif
}
//************************************************************************/
/** @brief Counts the number of leading zeros
*
* @param [in] val is the value for which leading zero count is sought
*/
#ifdef OPJ_COMPILER_MSVC
#pragma intrinsic(_BitScanReverse)
#endif
static INLINE
OPJ_UINT32 count_leading_zeros(OPJ_UINT32 val)
{
#ifdef OPJ_COMPILER_MSVC
unsigned long result = 0;
_BitScanReverse(&result, val);
return 31U ^ (OPJ_UINT32)result;
#elif (defined OPJ_COMPILER_GNUC)
return (OPJ_UINT32)__builtin_clz(val);
#else
val |= (val >> 1);
val |= (val >> 2);
val |= (val >> 4);
val |= (val >> 8);
val |= (val >> 16);
return 32U - population_count(val);
#endif
}
//************************************************************************/
/** @brief Read a little-endian serialized UINT32.
*
* @param [in] dataIn pointer to byte stream to read from
*/
static INLINE OPJ_UINT32 read_le_uint32(const void* dataIn)
{
#if defined(OPJ_BIG_ENDIAN)
const OPJ_UINT8* data = (const OPJ_UINT8*)dataIn;
return ((OPJ_UINT32)data[0]) | (OPJ_UINT32)(data[1] << 8) | (OPJ_UINT32)(
data[2] << 16) | (((
OPJ_UINT32)data[3]) <<
24U);
#else
return *(OPJ_UINT32*)dataIn;
#endif
}
//************************************************************************/
/** @brief MEL state structure for reading and decoding the MEL bitstream
*
* A number of events is decoded from the MEL bitstream ahead of time
* and stored in run/num_runs.
* Each run represents the number of zero events before a one event.
*/
typedef struct dec_mel {
// data decoding machinery
OPJ_UINT8* data; //!<the address of data (or bitstream)
OPJ_UINT64 tmp; //!<temporary buffer for read data
int bits; //!<number of bits stored in tmp
int size; //!<number of bytes in MEL code
OPJ_BOOL unstuff; //!<true if the next bit needs to be unstuffed
int k; //!<state of MEL decoder
// queue of decoded runs
int num_runs; //!<number of decoded runs left in runs (maximum 8)
OPJ_UINT64 runs; //!<runs of decoded MEL codewords (7 bits/run)
} dec_mel_t;
//************************************************************************/
/** @brief Reads and unstuffs the MEL bitstream
*
* This design needs more bytes in the codeblock buffer than the length
* of the cleanup pass by up to 2 bytes.
*
* Unstuffing removes the MSB of the byte following a byte whose
* value is 0xFF; this prevents sequences larger than 0xFF7F in value
* from appearing the bitstream.
*
* @param [in] melp is a pointer to dec_mel_t structure
*/
static INLINE
void mel_read(dec_mel_t *melp)
{
OPJ_UINT32 val;
int bits;
OPJ_UINT32 t;
OPJ_BOOL unstuff;
if (melp->bits > 32) { //there are enough bits in the tmp variable
return; // return without reading new data
}
val = 0xFFFFFFFF; // feed in 0xFF if buffer is exhausted
if (melp->size > 4) { // if there is more than 4 bytes the MEL segment
val = read_le_uint32(melp->data); // read 32 bits from MEL data
melp->data += 4; // advance pointer
melp->size -= 4; // reduce counter
} else if (melp->size > 0) { // 4 or less
OPJ_UINT32 m, v;
int i = 0;
while (melp->size > 1) {
OPJ_UINT32 v = *melp->data++; // read one byte at a time
OPJ_UINT32 m = ~(0xFFu << i); // mask of location
val = (val & m) | (v << i); // put byte in its correct location
--melp->size;
i += 8;
}
// size equal to 1
v = *melp->data++; // the one before the last is different
v |= 0xF; // MEL and VLC segments can overlap
m = ~(0xFFu << i);
val = (val & m) | (v << i);
--melp->size;
}
// next we unstuff them before adding them to the buffer
bits = 32 - melp->unstuff; // number of bits in val, subtract 1 if
// the previously read byte requires
// unstuffing
// data is unstuffed and accumulated in t
// bits has the number of bits in t
t = val & 0xFF;
unstuff = ((val & 0xFF) == 0xFF); // true if the byte needs unstuffing
bits -= unstuff; // there is one less bit in t if unstuffing is needed
t = t << (8 - unstuff); // move up to make room for the next byte
//this is a repeat of the above
t |= (val >> 8) & 0xFF;
unstuff = (((val >> 8) & 0xFF) == 0xFF);
bits -= unstuff;
t = t << (8 - unstuff);
t |= (val >> 16) & 0xFF;
unstuff = (((val >> 16) & 0xFF) == 0xFF);
bits -= unstuff;
t = t << (8 - unstuff);
t |= (val >> 24) & 0xFF;
melp->unstuff = (((val >> 24) & 0xFF) == 0xFF);
// move t to tmp, and push the result all the way up, so we read from
// the MSB
melp->tmp |= ((OPJ_UINT64)t) << (64 - bits - melp->bits);
melp->bits += bits; //increment the number of bits in tmp
}
//************************************************************************/
/** @brief Decodes unstuffed MEL segment bits stored in tmp to runs
*
* Runs are stored in "runs" and the number of runs in "num_runs".
* Each run represents a number of zero events that may or may not
* terminate in a 1 event.
* Each run is stored in 7 bits. The LSB is 1 if the run terminates in
* a 1 event, 0 otherwise. The next 6 bits, for the case terminating
* with 1, contain the number of consecutive 0 zero events * 2; for the
* case terminating with 0, they store (number of consecutive 0 zero
* events - 1) * 2.
* A total of 6 bits (made up of 1 + 5) should have been enough.
*
* @param [in] melp is a pointer to dec_mel_t structure
*/
static INLINE
void mel_decode(dec_mel_t *melp)
{
static const int mel_exp[13] = { //MEL exponents
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5
};
if (melp->bits < 6) { // if there are less than 6 bits in tmp
mel_read(melp); // then read from the MEL bitstream
}
// 6 bits is the largest decodable MEL cwd
//repeat so long that there is enough decodable bits in tmp,
// and the runs store is not full (num_runs < 8)
while (melp->bits >= 6 && melp->num_runs < 8) {
int eval = mel_exp[melp->k]; // number of bits associated with state
int run = 0;
if (melp->tmp & (1ull << 63)) { //The next bit to decode (stored in MSB)
//one is found
run = 1 << eval;
run--; // consecutive runs of 0 events - 1
melp->k = melp->k + 1 < 12 ? melp->k + 1 : 12;//increment, max is 12
melp->tmp <<= 1; // consume one bit from tmp
melp->bits -= 1;
run = run << 1; // a stretch of zeros not terminating in one
} else {
//0 is found
run = (int)(melp->tmp >> (63 - eval)) & ((1 << eval) - 1);
melp->k = melp->k - 1 > 0 ? melp->k - 1 : 0; //decrement, min is 0
melp->tmp <<= eval + 1; //consume eval + 1 bits (max is 6)
melp->bits -= eval + 1;
run = (run << 1) + 1; // a stretch of zeros terminating with one
}
eval = melp->num_runs * 7; // 7 bits per run
melp->runs &= ~((OPJ_UINT64)0x3F << eval); // 6 bits are sufficient
melp->runs |= ((OPJ_UINT64)run) << eval; // store the value in runs
melp->num_runs++; // increment count
}
}
//************************************************************************/
/** @brief Initiates a dec_mel_t structure for MEL decoding and reads
* some bytes in order to get the read address to a multiple
* of 4
*
* @param [in] melp is a pointer to dec_mel_t structure
* @param [in] bbuf is a pointer to byte buffer
* @param [in] lcup is the length of MagSgn+MEL+VLC segments
* @param [in] scup is the length of MEL+VLC segments
*/
static INLINE
void mel_init(dec_mel_t *melp, OPJ_UINT8* bbuf, int lcup, int scup)
{
int num;
int i;
melp->data = bbuf + lcup - scup; // move the pointer to the start of MEL
melp->bits = 0; // 0 bits in tmp
melp->tmp = 0; //
melp->unstuff = OPJ_FALSE; // no unstuffing
melp->size = scup - 1; // size is the length of MEL+VLC-1
melp->k = 0; // 0 for state
melp->num_runs = 0; // num_runs is 0
melp->runs = 0; //
//This code is borrowed; original is for a different architecture
//These few lines take care of the case where data is not at a multiple
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the MEL segment
num = 4 - (int)((intptr_t)(melp->data) & 0x3);
for (i = 0; i < num; ++i) { // this code is similar to mel_read
OPJ_UINT64 d;
int d_bits;
assert(melp->unstuff == OPJ_FALSE || melp->data[0] <= 0x8F);
d = (melp->size > 0) ? *melp->data : 0xFF; // if buffer is consumed
// set data to 0xFF
if (melp->size == 1) {
d |= 0xF; //if this is MEL+VLC-1, set LSBs to 0xF
}
// see the standard
melp->data += melp->size-- > 0; //increment if the end is not reached
d_bits = 8 - melp->unstuff; //if unstuffing is needed, reduce by 1
melp->tmp = (melp->tmp << d_bits) | d; //store bits in tmp
melp->bits += d_bits; //increment tmp by number of bits
melp->unstuff = ((d & 0xFF) == 0xFF); //true of next byte needs
//unstuffing
}
melp->tmp <<= (64 - melp->bits); //push all the way up so the first bit
// is the MSB
}
//************************************************************************/
/** @brief Retrieves one run from dec_mel_t; if there are no runs stored
* MEL segment is decoded
*
* @param [in] melp is a pointer to dec_mel_t structure
*/
static INLINE
int mel_get_run(dec_mel_t *melp)
{
int t;
if (melp->num_runs == 0) { //if no runs, decode more bit from MEL segment
mel_decode(melp);
}
t = melp->runs & 0x7F; //retrieve one run
melp->runs >>= 7; // remove the retrieved run
melp->num_runs--;
return t; // return run
}
//************************************************************************/
/** @brief A structure for reading and unstuffing a segment that grows
* backward, such as VLC and MRP
*/
typedef struct rev_struct {
//storage
OPJ_UINT8* data; //!<pointer to where to read data
OPJ_UINT64 tmp; //!<temporary buffer of read data
OPJ_UINT32 bits; //!<number of bits stored in tmp
int size; //!<number of bytes left
OPJ_BOOL unstuff; //!<true if the last byte is more than 0x8F
//!<then the current byte is unstuffed if it is 0x7F
} rev_struct_t;
//************************************************************************/
/** @brief Read and unstuff data from a backwardly-growing segment
*
* This reader can read up to 8 bytes from before the VLC segment.
* Care must be taken not read from unreadable memory, causing a
* segmentation fault.
*
* Note that there is another subroutine rev_read_mrp that is slightly
* different. The other one fills zeros when the buffer is exhausted.
* This one basically does not care if the bytes are consumed, because
* any extra data should not be used in the actual decoding.
*
* Unstuffing is needed to prevent sequences more than 0xFF8F from
* appearing in the bits stream; since we are reading backward, we keep
* watch when a value larger than 0x8F appears in the bitstream.
* If the byte following this is 0x7F, we unstuff this byte (ignore the
* MSB of that byte, which should be 0).
*
* @param [in] vlcp is a pointer to rev_struct_t structure
*/
static INLINE
void rev_read(rev_struct_t *vlcp)
{
OPJ_UINT32 val;
OPJ_UINT32 tmp;
OPJ_UINT32 bits;
OPJ_BOOL unstuff;
//process 4 bytes at a time
if (vlcp->bits > 32) { // if there are more than 32 bits in tmp, then
return; // reading 32 bits can overflow vlcp->tmp
}
val = 0;
//the next line (the if statement) needs to be tested first
if (vlcp->size > 3) { // if there are more than 3 bytes left in VLC
// (vlcp->data - 3) move pointer back to read 32 bits at once
val = read_le_uint32(vlcp->data - 3); // then read 32 bits
vlcp->data -= 4; // move data pointer back by 4
vlcp->size -= 4; // reduce available byte by 4
} else if (vlcp->size > 0) { // 4 or less
int i = 24;
while (vlcp->size > 0) {
OPJ_UINT32 v = *vlcp->data--; // read one byte at a time
val |= (v << i); // put byte in its correct location
--vlcp->size;
i -= 8;
}
}
//accumulate in tmp, number of bits in tmp are stored in bits
tmp = val >> 24; //start with the MSB byte
// test unstuff (previous byte is >0x8F), and this byte is 0x7F
bits = 8u - ((vlcp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u);
unstuff = (val >> 24) > 0x8F; //this is for the next byte
tmp |= ((val >> 16) & 0xFF) << bits; //process the next byte
bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u);
unstuff = ((val >> 16) & 0xFF) > 0x8F;
tmp |= ((val >> 8) & 0xFF) << bits;
bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u);
unstuff = ((val >> 8) & 0xFF) > 0x8F;
tmp |= (val & 0xFF) << bits;
bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u);
unstuff = (val & 0xFF) > 0x8F;
// now move the read and unstuffed bits into vlcp->tmp
vlcp->tmp |= (OPJ_UINT64)tmp << vlcp->bits;
vlcp->bits += bits;
vlcp->unstuff = unstuff; // this for the next read
}
//************************************************************************/
/** @brief Initiates the rev_struct_t structure and reads a few bytes to
* move the read address to multiple of 4
*
* There is another similar rev_init_mrp subroutine. The difference is
* that this one, rev_init, discards the first 12 bits (they have the
* sum of the lengths of VLC and MEL segments), and first unstuff depends
* on first 4 bits.
*
* @param [in] vlcp is a pointer to rev_struct_t structure
* @param [in] data is a pointer to byte at the start of the cleanup pass
* @param [in] lcup is the length of MagSgn+MEL+VLC segments
* @param [in] scup is the length of MEL+VLC segments
*/
static INLINE
void rev_init(rev_struct_t *vlcp, OPJ_UINT8* data, int lcup, int scup)
{
OPJ_UINT32 d;
int num, tnum, i;
//first byte has only the upper 4 bits
vlcp->data = data + lcup - 2;
//size can not be larger than this, in fact it should be smaller
vlcp->size = scup - 2;
d = *vlcp->data--; // read one byte (this is a half byte)
vlcp->tmp = d >> 4; // both initialize and set
vlcp->bits = 4 - ((vlcp->tmp & 7) == 7); //check standard
vlcp->unstuff = (d | 0xF) > 0x8F; //this is useful for the next byte
//This code is designed for an architecture that read address should
// align to the read size (address multiple of 4 if read size is 4)
//These few lines take care of the case where data is not at a multiple
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the VLC bitstream.
// To read 32 bits, read from (vlcp->data - 3)
num = 1 + (int)((intptr_t)(vlcp->data) & 0x3);
tnum = num < vlcp->size ? num : vlcp->size;
for (i = 0; i < tnum; ++i) {
OPJ_UINT64 d;
OPJ_UINT32 d_bits;
d = *vlcp->data--; // read one byte and move read pointer
//check if the last byte was >0x8F (unstuff == true) and this is 0x7F
d_bits = 8u - ((vlcp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u);
vlcp->tmp |= d << vlcp->bits; // move data to vlcp->tmp
vlcp->bits += d_bits;
vlcp->unstuff = d > 0x8F; // for next byte
}
vlcp->size -= tnum;
rev_read(vlcp); // read another 32 buts
}
//************************************************************************/
/** @brief Retrieves 32 bits from the head of a rev_struct structure
*
* By the end of this call, vlcp->tmp must have no less than 33 bits
*
* @param [in] vlcp is a pointer to rev_struct structure
*/
static INLINE
OPJ_UINT32 rev_fetch(rev_struct_t *vlcp)
{
if (vlcp->bits < 32) { // if there are less then 32 bits, read more
rev_read(vlcp); // read 32 bits, but unstuffing might reduce this
if (vlcp->bits < 32) { // if there is still space in vlcp->tmp for 32 bits
rev_read(vlcp); // read another 32
}
}
return (OPJ_UINT32)vlcp->tmp; // return the head (bottom-most) of vlcp->tmp
}
//************************************************************************/
/** @brief Consumes num_bits from a rev_struct structure
*
* @param [in] vlcp is a pointer to rev_struct structure
* @param [in] num_bits is the number of bits to be removed
*/
static INLINE
OPJ_UINT32 rev_advance(rev_struct_t *vlcp, OPJ_UINT32 num_bits)
{
assert(num_bits <= vlcp->bits); // vlcp->tmp must have more than num_bits
vlcp->tmp >>= num_bits; // remove bits
vlcp->bits -= num_bits; // decrement the number of bits
return (OPJ_UINT32)vlcp->tmp;
}
//************************************************************************/
/** @brief Reads and unstuffs from rev_struct
*
* This is different than rev_read in that this fills in zeros when the
* the available data is consumed. The other does not care about the
* values when all data is consumed.
*
* See rev_read for more information about unstuffing
*
* @param [in] mrp is a pointer to rev_struct structure
*/
static INLINE
void rev_read_mrp(rev_struct_t *mrp)
{
OPJ_UINT32 val;
OPJ_UINT32 tmp;
OPJ_UINT32 bits;
OPJ_BOOL unstuff;
//process 4 bytes at a time
if (mrp->bits > 32) {
return;
}
val = 0;
if (mrp->size > 3) { // If there are 3 byte or more
// (mrp->data - 3) move pointer back to read 32 bits at once
val = read_le_uint32(mrp->data - 3); // read 32 bits
mrp->data -= 4; // move back pointer
mrp->size -= 4; // reduce count
} else if (mrp->size > 0) {
int i = 24;
while (mrp->size > 0) {
OPJ_UINT32 v = *mrp->data--; // read one byte at a time
val |= (v << i); // put byte in its correct location
--mrp->size;
i -= 8;
}
}
//accumulate in tmp, and keep count in bits
tmp = val >> 24;
//test if the last byte > 0x8F (unstuff must be true) and this is 0x7F
bits = 8u - ((mrp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u);
unstuff = (val >> 24) > 0x8F;
//process the next byte
tmp |= ((val >> 16) & 0xFF) << bits;
bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u);
unstuff = ((val >> 16) & 0xFF) > 0x8F;
tmp |= ((val >> 8) & 0xFF) << bits;
bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u);
unstuff = ((val >> 8) & 0xFF) > 0x8F;
tmp |= (val & 0xFF) << bits;
bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u);
unstuff = (val & 0xFF) > 0x8F;
mrp->tmp |= (OPJ_UINT64)tmp << mrp->bits; // move data to mrp pointer
mrp->bits += bits;
mrp->unstuff = unstuff; // next byte
}
//************************************************************************/
/** @brief Initialized rev_struct structure for MRP segment, and reads
* a number of bytes such that the next 32 bits read are from
* an address that is a multiple of 4. Note this is designed for
* an architecture that read size must be compatible with the
* alignment of the read address
*
* There is another similar subroutine rev_init. This subroutine does
* NOT skip the first 12 bits, and starts with unstuff set to true.
*
* @param [in] mrp is a pointer to rev_struct structure
* @param [in] data is a pointer to byte at the start of the cleanup pass
* @param [in] lcup is the length of MagSgn+MEL+VLC segments
* @param [in] len2 is the length of SPP+MRP segments
*/
static INLINE
void rev_init_mrp(rev_struct_t *mrp, OPJ_UINT8* data, int lcup, int len2)
{
int num, i;
mrp->data = data + lcup + len2 - 1;
mrp->size = len2;
mrp->unstuff = OPJ_TRUE;
mrp->bits = 0;
mrp->tmp = 0;
//This code is designed for an architecture that read address should
// align to the read size (address multiple of 4 if read size is 4)
//These few lines take care of the case where data is not at a multiple
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the MRP stream
num = 1 + (int)((intptr_t)(mrp->data) & 0x3);
for (i = 0; i < num; ++i) {
OPJ_UINT64 d;
OPJ_UINT32 d_bits;
//read a byte, 0 if no more data
d = (mrp->size-- > 0) ? *mrp->data-- : 0;
//check if unstuffing is needed
d_bits = 8u - ((mrp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u);
mrp->tmp |= d << mrp->bits; // move data to vlcp->tmp
mrp->bits += d_bits;
mrp->unstuff = d > 0x8F; // for next byte
}
rev_read_mrp(mrp);
}
//************************************************************************/
/** @brief Retrieves 32 bits from the head of a rev_struct structure
*
* By the end of this call, mrp->tmp must have no less than 33 bits
*
* @param [in] mrp is a pointer to rev_struct structure
*/
static INLINE
OPJ_UINT32 rev_fetch_mrp(rev_struct_t *mrp)
{
if (mrp->bits < 32) { // if there are less than 32 bits in mrp->tmp
rev_read_mrp(mrp); // read 30-32 bits from mrp
if (mrp->bits < 32) { // if there is a space of 32 bits
rev_read_mrp(mrp); // read more
}
}
return (OPJ_UINT32)mrp->tmp; // return the head of mrp->tmp
}
//************************************************************************/
/** @brief Consumes num_bits from a rev_struct structure
*
* @param [in] mrp is a pointer to rev_struct structure
* @param [in] num_bits is the number of bits to be removed
*/
static INLINE
OPJ_UINT32 rev_advance_mrp(rev_struct_t *mrp, OPJ_UINT32 num_bits)
{
assert(num_bits <= mrp->bits); // we must not consume more than mrp->bits
mrp->tmp >>= num_bits; // discard the lowest num_bits bits
mrp->bits -= num_bits;
return (OPJ_UINT32)mrp->tmp; // return data after consumption
}
//************************************************************************/
/** @brief Decode initial UVLC to get the u value (or u_q)
*
* @param [in] vlc is the head of the VLC bitstream
* @param [in] mode is 0, 1, 2, 3, or 4. Values in 0 to 3 are composed of
* u_off of 1st quad and 2nd quad of a quad pair. The value
* 4 occurs when both bits are 1, and the event decoded
* from MEL bitstream is also 1.
* @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1;
* this value is a partial calculation of u + kappa.
*/
static INLINE
OPJ_UINT32 decode_init_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u)
{
//table stores possible decoding three bits from vlc
// there are 8 entries for xx1, x10, 100, 000, where x means do not care
// table value is made up of
// 2 bits in the LSB for prefix length
// 3 bits for suffix length
// 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814)
static const OPJ_UINT8 dec[8] = { // the index is the prefix codeword
3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000"
1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1"
2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01"
1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1"
3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001"
1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1"
2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01"
1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1"
};
OPJ_UINT32 consumed_bits = 0;
if (mode == 0) { // both u_off are 0
u[0] = u[1] = 1; //Kappa is 1 for initial line
} else if (mode <= 2) { // u_off are either 01 or 10
OPJ_UINT32 d;
OPJ_UINT32 suffix_len;
d = dec[vlc & 0x7]; //look at the least significant 3 bits
vlc >>= d & 0x3; //prefix length
consumed_bits += d & 0x3;
suffix_len = ((d >> 2) & 0x7);
consumed_bits += suffix_len;
d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[0] = (mode == 1) ? d + 1 : 1; // kappa is 1 for initial line
u[1] = (mode == 1) ? 1 : d + 1; // kappa is 1 for initial line
} else if (mode == 3) { // both u_off are 1, and MEL event is 0
OPJ_UINT32 d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
vlc >>= d1 & 0x3; // Consume bits
consumed_bits += d1 & 0x3;
if ((d1 & 0x3) > 2) {
OPJ_UINT32 suffix_len;
//u_{q_2} prefix
u[1] = (vlc & 1) + 1 + 1; //Kappa is 1 for initial line
++consumed_bits;
vlc >>= 1;
suffix_len = ((d1 >> 2) & 0x7);
consumed_bits += suffix_len;
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[0] = d1 + 1; //Kappa is 1 for initial line
} else {
OPJ_UINT32 d2;
OPJ_UINT32 suffix_len;
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
vlc >>= d2 & 0x3; // Consume bits
consumed_bits += d2 & 0x3;
suffix_len = ((d1 >> 2) & 0x7);
consumed_bits += suffix_len;
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[0] = d1 + 1; //Kappa is 1 for initial line
vlc >>= suffix_len;
suffix_len = ((d2 >> 2) & 0x7);
consumed_bits += suffix_len;
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[1] = d2 + 1; //Kappa is 1 for initial line
}
} else if (mode == 4) { // both u_off are 1, and MEL event is 1
OPJ_UINT32 d1;
OPJ_UINT32 d2;
OPJ_UINT32 suffix_len;
d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
vlc >>= d1 & 0x3; // Consume bits
consumed_bits += d1 & 0x3;
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
vlc >>= d2 & 0x3; // Consume bits
consumed_bits += d2 & 0x3;
suffix_len = ((d1 >> 2) & 0x7);
consumed_bits += suffix_len;
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[0] = d1 + 3; // add 2+kappa
vlc >>= suffix_len;
suffix_len = ((d2 >> 2) & 0x7);
consumed_bits += suffix_len;
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[1] = d2 + 3; // add 2+kappa
}
return consumed_bits;
}
//************************************************************************/
/** @brief Decode non-initial UVLC to get the u value (or u_q)
*
* @param [in] vlc is the head of the VLC bitstream
* @param [in] mode is 0, 1, 2, or 3. The 1st bit is u_off of 1st quad
* and 2nd for 2nd quad of a quad pair
* @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1;
* this value is a partial calculation of u + kappa.
*/
static INLINE
OPJ_UINT32 decode_noninit_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u)
{
//table stores possible decoding three bits from vlc
// there are 8 entries for xx1, x10, 100, 000, where x means do not care
// table value is made up of
// 2 bits in the LSB for prefix length
// 3 bits for suffix length
// 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814)
static const OPJ_UINT8 dec[8] = {
3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000"
1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1"
2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01"
1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1"
3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001"
1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1"
2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01"
1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1"
};
OPJ_UINT32 consumed_bits = 0;
if (mode == 0) {
u[0] = u[1] = 1; //for kappa
} else if (mode <= 2) { //u_off are either 01 or 10
OPJ_UINT32 d;
OPJ_UINT32 suffix_len;
d = dec[vlc & 0x7]; //look at the least significant 3 bits
vlc >>= d & 0x3; //prefix length
consumed_bits += d & 0x3;
suffix_len = ((d >> 2) & 0x7);
consumed_bits += suffix_len;
d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[0] = (mode == 1) ? d + 1 : 1; //for kappa
u[1] = (mode == 1) ? 1 : d + 1; //for kappa
} else if (mode == 3) { // both u_off are 1
OPJ_UINT32 d1;
OPJ_UINT32 d2;
OPJ_UINT32 suffix_len;
d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
vlc >>= d1 & 0x3; // Consume bits
consumed_bits += d1 & 0x3;
d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword
vlc >>= d2 & 0x3; // Consume bits
consumed_bits += d2 & 0x3;
suffix_len = ((d1 >> 2) & 0x7);
consumed_bits += suffix_len;
d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[0] = d1 + 1; //1 for kappa
vlc >>= suffix_len;
suffix_len = ((d2 >> 2) & 0x7);
consumed_bits += suffix_len;
d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
u[1] = d2 + 1; //1 for kappa
}
return consumed_bits;
}
//************************************************************************/
/** @brief State structure for reading and unstuffing of forward-growing
* bitstreams; these are: MagSgn and SPP bitstreams
*/
typedef struct frwd_struct {
const OPJ_UINT8* data; //!<pointer to bitstream
OPJ_UINT64 tmp; //!<temporary buffer of read data
OPJ_UINT32 bits; //!<number of bits stored in tmp
OPJ_BOOL unstuff; //!<true if a bit needs to be unstuffed from next byte
int size; //!<size of data
OPJ_UINT32 X; //!<0 or 0xFF, X's are inserted at end of bitstream
} frwd_struct_t;
//************************************************************************/
/** @brief Read and unstuffs 32 bits from forward-growing bitstream
*
* A subroutine to read from both the MagSgn or SPP bitstreams;
* in particular, when MagSgn bitstream is consumed, 0xFF's are fed,
* while when SPP is exhausted 0's are fed in.
* X controls this value.
*
* Unstuffing prevent sequences that are more than 0xFF7F from appearing
* in the conpressed sequence. So whenever a value of 0xFF is coded, the
* MSB of the next byte is set 0 and must be ignored during decoding.
*
* Reading can go beyond the end of buffer by up to 3 bytes.
*
* @param [in] msp is a pointer to frwd_struct_t structure
*
*/
static INLINE
void frwd_read(frwd_struct_t *msp)
{
OPJ_UINT32 val;
OPJ_UINT32 bits;
OPJ_UINT32 t;
OPJ_BOOL unstuff;
assert(msp->bits <= 32); // assert that there is a space for 32 bits
val = 0u;
if (msp->size > 3) {
val = read_le_uint32(msp->data); // read 32 bits
msp->data += 4; // increment pointer
msp->size -= 4; // reduce size
} else if (msp->size > 0) {
int i = 0;
val = msp->X != 0 ? 0xFFFFFFFFu : 0;
while (msp->size > 0) {
OPJ_UINT32 v = *msp->data++; // read one byte at a time
OPJ_UINT32 m = ~(0xFFu << i); // mask of location
val = (val & m) | (v << i); // put one byte in its correct location
--msp->size;
i += 8;
}
} else {
val = msp->X != 0 ? 0xFFFFFFFFu : 0;
}
// we accumulate in t and keep a count of the number of bits in bits
bits = 8u - (msp->unstuff ? 1u : 0u);
t = val & 0xFF;
unstuff = ((val & 0xFF) == 0xFF); // Do we need unstuffing next?
t |= ((val >> 8) & 0xFF) << bits;
bits += 8u - (unstuff ? 1u : 0u);
unstuff = (((val >> 8) & 0xFF) == 0xFF);
t |= ((val >> 16) & 0xFF) << bits;
bits += 8u - (unstuff ? 1u : 0u);
unstuff = (((val >> 16) & 0xFF) == 0xFF);
t |= ((val >> 24) & 0xFF) << bits;
bits += 8u - (unstuff ? 1u : 0u);
msp->unstuff = (((val >> 24) & 0xFF) == 0xFF); // for next byte
msp->tmp |= ((OPJ_UINT64)t) << msp->bits; // move data to msp->tmp
msp->bits += bits;
}
//************************************************************************/
/** @brief Initialize frwd_struct_t struct and reads some bytes
*
* @param [in] msp is a pointer to frwd_struct_t
* @param [in] data is a pointer to the start of data
* @param [in] size is the number of byte in the bitstream
* @param [in] X is the value fed in when the bitstream is exhausted.
* See frwd_read.
*/
static INLINE
void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size,
OPJ_UINT32 X)
{
int num, i;
msp->data = data;
msp->tmp = 0;
msp->bits = 0;
msp->unstuff = OPJ_FALSE;
msp->size = size;
msp->X = X;
assert(msp->X == 0 || msp->X == 0xFF);
//This code is designed for an architecture that read address should
// align to the read size (address multiple of 4 if read size is 4)
//These few lines take care of the case where data is not at a multiple
// of 4 boundary. It reads 1,2,3 up to 4 bytes from the bitstream
num = 4 - (int)((intptr_t)(msp->data) & 0x3);
for (i = 0; i < num; ++i) {
OPJ_UINT64 d;
//read a byte if the buffer is not exhausted, otherwise set it to X
d = msp->size-- > 0 ? *msp->data++ : msp->X;
msp->tmp |= (d << msp->bits); // store data in msp->tmp
msp->bits += 8u - (msp->unstuff ? 1u : 0u); // number of bits added to msp->tmp
msp->unstuff = ((d & 0xFF) == 0xFF); // unstuffing for next byte
}
frwd_read(msp); // read 32 bits more
}
//************************************************************************/
/** @brief Consume num_bits bits from the bitstream of frwd_struct_t
*
* @param [in] msp is a pointer to frwd_struct_t
* @param [in] num_bits is the number of bit to consume
*/
static INLINE
void frwd_advance(frwd_struct_t *msp, OPJ_UINT32 num_bits)
{
assert(num_bits <= msp->bits);
msp->tmp >>= num_bits; // consume num_bits
msp->bits -= num_bits;
}
//************************************************************************/
/** @brief Fetches 32 bits from the frwd_struct_t bitstream
*
* @param [in] msp is a pointer to frwd_struct_t
*/
static INLINE
OPJ_UINT32 frwd_fetch(frwd_struct_t *msp)
{
if (msp->bits < 32) {
frwd_read(msp);
if (msp->bits < 32) { //need to test
frwd_read(msp);
}
}
return (OPJ_UINT32)msp->tmp;
}
//************************************************************************/
/** @brief Allocates T1 buffers
*
* @param [in, out] t1 is codeblock cofficients storage
* @param [in] w is codeblock width
* @param [in] h is codeblock height
*/
static OPJ_BOOL opj_t1_allocate_buffers(
opj_t1_t *t1,
OPJ_UINT32 w,
OPJ_UINT32 h)
{
OPJ_UINT32 flagssize;
/* No risk of overflow. Prior checks ensure those assert are met */
/* They are per the specification */
assert(w <= 1024);
assert(h <= 1024);
assert(w * h <= 4096);
/* encoder uses tile buffer, so no need to allocate */
{
OPJ_UINT32 datasize = w * h;
if (datasize > t1->datasize) {
opj_aligned_free(t1->data);
t1->data = (OPJ_INT32*)
opj_aligned_malloc(datasize * sizeof(OPJ_INT32));
if (!t1->data) {
/* FIXME event manager error callback */
return OPJ_FALSE;
}
t1->datasize = datasize;
}
/* memset first arg is declared to never be null by gcc */
if (t1->data != NULL) {
memset(t1->data, 0, datasize * sizeof(OPJ_INT32));
}
}
// We expand these buffers to multiples of 16 bytes.
// We need 4 buffers of 129 integers each, expanded to 132 integers each
// We also need 514 bytes of buffer, expanded to 528 bytes
flagssize = 132U * sizeof(OPJ_UINT32) * 4U; // expanded to multiple of 16
flagssize += 528U; // 514 expanded to multiples of 16
{
if (flagssize > t1->flagssize) {
opj_aligned_free(t1->flags);
t1->flags = (opj_flag_t*) opj_aligned_malloc(flagssize);
if (!t1->flags) {
/* FIXME event manager error callback */
return OPJ_FALSE;
}
}
t1->flagssize = flagssize;
memset(t1->flags, 0, flagssize);
}
t1->w = w;
t1->h = h;
return OPJ_TRUE;
}
//************************************************************************/
/** @brief Decodes one codeblock, processing the cleanup, siginificance
* propagation, and magnitude refinement pass
*
* @param [in, out] t1 is codeblock cofficients storage
* @param [in] cblk is codeblock properties
* @param [in] orient is the subband to which the codeblock belongs (not needed)
* @param [in] roishift is region of interest shift
* @param [in] cblksty is codeblock style
* @param [in] p_manager is events print manager
* @param [in] p_manager_mutex a mutex to control access to p_manager
* @param [in] check_pterm: check termination (not used)
*/
OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1,
opj_tcd_cblk_dec_t* cblk,
OPJ_UINT32 orient,
OPJ_UINT32 roishift,
OPJ_UINT32 cblksty,
opj_event_mgr_t *p_manager,
opj_mutex_t* p_manager_mutex,
OPJ_BOOL check_pterm)
{
OPJ_BYTE* cblkdata = NULL;
OPJ_UINT8* coded_data;
OPJ_UINT32* decoded_data;
OPJ_UINT32 zero_bplanes;
OPJ_UINT32 num_passes;
OPJ_UINT32 lengths1;
OPJ_UINT32 lengths2;
OPJ_INT32 width;
OPJ_INT32 height;
OPJ_INT32 stride;
OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift;
OPJ_UINT32 p;
OPJ_UINT32 zero_bplanes_p1;
int lcup, scup;
dec_mel_t mel;
rev_struct_t vlc;
frwd_struct_t magsgn;
frwd_struct_t sigprop;
rev_struct_t magref;
OPJ_UINT8 *lsp, *line_state;
int run;
OPJ_UINT32 vlc_val; // fetched data from VLC bitstream
OPJ_UINT32 qinf[2];
OPJ_UINT32 c_q;
OPJ_UINT32* sp;
OPJ_INT32 x, y; // loop indices
OPJ_BOOL stripe_causal = (cblksty & J2K_CCP_CBLKSTY_VSC) != 0;
OPJ_UINT32 cblk_len = 0;
(void)(orient); // stops unused parameter message
(void)(check_pterm); // stops unused parameter message
// We ignor orient, because the same decoder is used for all subbands
// We also ignore check_pterm, because I am not sure how it applies
if (roishift != 0) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "We do not support ROI in decoding "
"HT codeblocks\n");
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
if (!opj_t1_allocate_buffers(
t1,
(OPJ_UINT32)(cblk->x1 - cblk->x0),
(OPJ_UINT32)(cblk->y1 - cblk->y0))) {
return OPJ_FALSE;
}
if (cblk->Mb == 0) {
return OPJ_TRUE;
}
/* numbps = Mb + 1 - zero_bplanes, Mb = Kmax, zero_bplanes = missing_msbs */
zero_bplanes = (cblk->Mb + 1) - cblk->numbps;
/* Compute whole codeblock length from chunk lengths */
cblk_len = 0;
{
OPJ_UINT32 i;
for (i = 0; i < cblk->numchunks; i++) {
cblk_len += cblk->chunks[i].len;
}
}
if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) {
OPJ_UINT32 i;
/* Allocate temporary memory if needed */
if (cblk_len > t1->cblkdatabuffersize) {
cblkdata = (OPJ_BYTE*)opj_realloc(
t1->cblkdatabuffer, cblk_len);
if (cblkdata == NULL) {
return OPJ_FALSE;
}
t1->cblkdatabuffer = cblkdata;
t1->cblkdatabuffersize = cblk_len;
}
/* Concatenate all chunks */
cblkdata = t1->cblkdatabuffer;
cblk_len = 0;
for (i = 0; i < cblk->numchunks; i++) {
memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len);
cblk_len += cblk->chunks[i].len;
}
} else if (cblk->numchunks == 1) {
cblkdata = cblk->chunks[0].data;
} else {
/* Not sure if that can happen in practice, but avoid Coverity to */
/* think we will dereference a null cblkdta pointer */
return OPJ_TRUE;
}
// OPJ_BYTE* coded_data is a pointer to bitstream
coded_data = cblkdata;
// OPJ_UINT32* decoded_data is a pointer to decoded codeblock data buf.
decoded_data = (OPJ_UINT32*)t1->data;
// OPJ_UINT32 num_passes is the number of passes: 1 if CUP only, 2 for
// CUP+SPP, and 3 for CUP+SPP+MRP
num_passes = cblk->numsegs > 0 ? cblk->segs[0].real_num_passes : 0;
num_passes += cblk->numsegs > 1 ? cblk->segs[1].real_num_passes : 0;
// OPJ_UINT32 lengths1 is the length of cleanup pass
lengths1 = num_passes > 0 ? cblk->segs[0].len : 0;
// OPJ_UINT32 lengths2 is the length of refinement passes (either SPP only or SPP+MRP)
lengths2 = num_passes > 1 ? cblk->segs[1].len : 0;
// OPJ_INT32 width is the decoded codeblock width
width = cblk->x1 - cblk->x0;
// OPJ_INT32 height is the decoded codeblock height
height = cblk->y1 - cblk->y0;
// OPJ_INT32 stride is the decoded codeblock buffer stride
stride = width;
/* sigma1 and sigma2 contains significant (i.e., non-zero) pixel
* locations. The buffers are used interchangeably, because we need
* more than 4 rows of significance information at a given time.
* Each 32 bits contain significance information for 4 rows of 8
* columns each. If we denote 32 bits by 0xaaaaaaaa, the each "a" is
* called a nibble and has significance information for 4 rows.
* The least significant nibble has information for the first column,
* and so on. The nibble's LSB is for the first row, and so on.
* Since, at most, we can have 1024 columns in a quad, we need 128
* entries; we added 1 for convenience when propagation of signifcance
* goes outside the structure
* To work in OpenJPEG these buffers has been expanded to 132.
*/
// OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift;
pflags = (OPJ_UINT32 *)t1->flags;
sigma1 = pflags;
sigma2 = sigma1 + 132;
// mbr arrangement is similar to sigma; mbr contains locations
// that become significant during significance propagation pass
mbr1 = sigma2 + 132;
mbr2 = mbr1 + 132;
//a pointer to sigma
sip = sigma1; //pointers to arrays to be used interchangeably
sip_shift = 0; //the amount of shift needed for sigma
if (num_passes > 1 && lengths2 == 0) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_WARNING, "A malformed codeblock that has "
"more than one coding pass, but zero length for "
"2nd and potentially the 3rd pass in an HT codeblock.\n");
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
num_passes = 1;
}
if (num_passes > 3) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "We do not support more than 3 "
"coding passes in an HT codeblock; This codeblocks has "
"%d passes.\n", num_passes);
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
if (cblk->Mb > 30) {
/* This check is better moved to opj_t2_read_packet_header() in t2.c
We do not have enough precision to decode any passes
The design of openjpeg assumes that the bits of a 32-bit integer are
assigned as follows:
bit 31 is for sign
bits 30-1 are for magnitude
bit 0 is for the center of the quantization bin
Therefore we can only do values of cblk->Mb <= 30
*/
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "32 bits are not enough to "
"decode this codeblock, since the number of "
"bitplane, %d, is larger than 30.\n", cblk->Mb);
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
if (zero_bplanes > cblk->Mb) {
/* This check is better moved to opj_t2_read_packet_header() in t2.c,
in the line "l_cblk->numbps = (OPJ_UINT32)l_band->numbps + 1 - i;"
where i is the zero bitplanes, and should be no larger than cblk->Mb
We cannot have more zero bitplanes than there are planes. */
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
"Decoding this codeblock is stopped. There are "
"%d zero bitplanes in %d bitplanes.\n",
zero_bplanes, cblk->Mb);
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
} else if (zero_bplanes == cblk->Mb && num_passes > 1) {
/* When the number of zero bitplanes is equal to the number of bitplanes,
only the cleanup pass makes sense*/
if (only_cleanup_pass_is_decoded == OPJ_FALSE) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
/* We have a second check to prevent the possibility of an overrun condition,
in the very unlikely event of a second thread discovering that
only_cleanup_pass_is_decoded is false before the first thread changing
the condition. */
if (only_cleanup_pass_is_decoded == OPJ_FALSE) {
only_cleanup_pass_is_decoded = OPJ_TRUE;
opj_event_msg(p_manager, EVT_WARNING, "Malformed HT codeblock. "
"When the number of zero planes bitplanes is "
"equal to the number of bitplanes, only the cleanup "
"pass makes sense, but we have %d passes in this "
"codeblock. Therefore, only the cleanup pass will be "
"decoded. This message will not be displayed again.\n",
num_passes);
}
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
}
num_passes = 1;
}
/* OPJ_UINT32 */
p = cblk->numbps;
// OPJ_UINT32 zero planes plus 1
zero_bplanes_p1 = zero_bplanes + 1;
if (lengths1 < 2 || (OPJ_UINT32)lengths1 > cblk_len ||
(OPJ_UINT32)(lengths1 + lengths2) > cblk_len) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
"Invalid codeblock length values.\n");
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
// read scup and fix the bytes there
lcup = (int)lengths1; // length of CUP
//scup is the length of MEL + VLC
scup = (((int)coded_data[lcup - 1]) << 4) + (coded_data[lcup - 2] & 0xF);
if (scup < 2 || scup > lcup || scup > 4079) { //something is wrong
/* The standard stipulates 2 <= Scup <= min(Lcup, 4079) */
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
"One of the following condition is not met: "
"2 <= Scup <= min(Lcup, 4079)\n");
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
// init structures
mel_init(&mel, coded_data, lcup, scup);
rev_init(&vlc, coded_data, lcup, scup);
frwd_init(&magsgn, coded_data, lcup - scup, 0xFF);
if (num_passes > 1) { // needs to be tested
frwd_init(&sigprop, coded_data + lengths1, (int)lengths2, 0);
}
if (num_passes > 2) {
rev_init_mrp(&magref, coded_data, (int)lengths1, (int)lengths2);
}
/** State storage
* One byte per quad; for 1024 columns, or 512 quads, we need
* 512 bytes. We are using 2 extra bytes one on the left and one on
* the right for convenience.
*
* The MSB bit in each byte is (\sigma^nw | \sigma^n), and the 7 LSBs
* contain max(E^nw | E^n)
*/
// 514 is enough for a block width of 1024, +2 extra
// here expanded to 528
line_state = (OPJ_UINT8 *)(mbr2 + 132);
//initial 2 lines
/////////////////
lsp = line_state; // point to line state
lsp[0] = 0; // for initial row of quad, we set to 0
run = mel_get_run(&mel); // decode runs of events from MEL bitstrm
// data represented as runs of 0 events
// See mel_decode description
qinf[0] = qinf[1] = 0; // quad info decoded from VLC bitstream
c_q = 0; // context for quad q
sp = decoded_data; // decoded codeblock samples
// vlc_val; // fetched data from VLC bitstream
for (x = 0; x < width; x += 4) { // one iteration per quad pair
OPJ_UINT32 U_q[2]; // u values for the quad pair
OPJ_UINT32 uvlc_mode;
OPJ_UINT32 consumed_bits;
OPJ_UINT32 m_n, v_n;
OPJ_UINT32 ms_val;
OPJ_UINT32 locs;
// decode VLC
/////////////
//first quad
// Get the head of the VLC bitstream. One fetch is enough for two
// quads, since the largest VLC code is 7 bits, and maximum number of
// bits used for u is 8. Therefore for two quads we need 30 bits
// (if we include unstuffing, then 32 bits are enough, since we have
// a maximum of one stuffing per two bytes)
vlc_val = rev_fetch(&vlc);
//decode VLC using the context c_q and the head of the VLC bitstream
qinf[0] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F) ];
if (c_q == 0) { // if zero context, we need to use one MEL event
run -= 2; //the number of 0 events is multiplied by 2, so subtract 2
// Is the run terminated in 1? if so, use decoded VLC code,
// otherwise, discard decoded data, since we will decoded again
// using a different context
qinf[0] = (run == -1) ? qinf[0] : 0;
// is run -1 or -2? this means a run has been consumed
if (run < 0) {
run = mel_get_run(&mel); // get another run
}
}
// prepare context for the next quad; eqn. 1 in ITU T.814
c_q = ((qinf[0] & 0x10) >> 4) | ((qinf[0] & 0xE0) >> 5);
//remove data from vlc stream (0 bits are removed if qinf is not used)
vlc_val = rev_advance(&vlc, qinf[0] & 0x7);
//update sigma
// The update depends on the value of x; consider one OPJ_UINT32
// if x is 0, 8, 16 and so on, then this line update c locations
// nibble (4 bits) number 0 1 2 3 4 5 6 7
// LSB c c 0 0 0 0 0 0
// c c 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0
// if x is 4, 12, 20, then this line update locations c
// nibble (4 bits) number 0 1 2 3 4 5 6 7
// LSB 0 0 0 0 c c 0 0
// 0 0 0 0 c c 0 0
// 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0
*sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift;
//second quad
qinf[1] = 0;
if (x + 2 < width) { // do not run if codeblock is narrower
//decode VLC using the context c_q and the head of the VLC bitstream
qinf[1] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F)];
// if context is zero, use one MEL event
if (c_q == 0) { //zero context
run -= 2; //subtract 2, since events number if multiplied by 2
// if event is 0, discard decoded qinf
qinf[1] = (run == -1) ? qinf[1] : 0;
if (run < 0) { // have we consumed all events in a run
run = mel_get_run(&mel); // if yes, then get another run
}
}
//prepare context for the next quad, eqn. 1 in ITU T.814
c_q = ((qinf[1] & 0x10) >> 4) | ((qinf[1] & 0xE0) >> 5);
//remove data from vlc stream, if qinf is not used, cwdlen is 0
vlc_val = rev_advance(&vlc, qinf[1] & 0x7);
}
//update sigma
// The update depends on the value of x; consider one OPJ_UINT32
// if x is 0, 8, 16 and so on, then this line update c locations
// nibble (4 bits) number 0 1 2 3 4 5 6 7
// LSB 0 0 c c 0 0 0 0
// 0 0 c c 0 0 0 0
// 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0
// if x is 4, 12, 20, then this line update locations c
// nibble (4 bits) number 0 1 2 3 4 5 6 7
// LSB 0 0 0 0 0 0 c c
// 0 0 0 0 0 0 c c
// 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0
*sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift);
sip += x & 0x7 ? 1 : 0; // move sigma pointer to next entry
sip_shift ^= 0x10; // increment/decrement sip_shift by 16
// retrieve u
/////////////
// uvlc_mode is made up of u_offset bits from the quad pair
uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2);
if (uvlc_mode == 3) { // if both u_offset are set, get an event from
// the MEL run of events
run -= 2; //subtract 2, since events number if multiplied by 2
uvlc_mode += (run == -1) ? 1 : 0; //increment uvlc_mode if event is 1
if (run < 0) { // if run is consumed (run is -1 or -2), get another run
run = mel_get_run(&mel);
}
}
//decode uvlc_mode to get u for both quads
consumed_bits = decode_init_uvlc(vlc_val, uvlc_mode, U_q);
if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. Decoding "
"this codeblock is stopped. U_q is larger than zero "
"bitplanes + 1 \n");
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
//consume u bits in the VLC code
vlc_val = rev_advance(&vlc, consumed_bits);
//decode magsgn and update line_state
/////////////////////////////////////
//We obtain a mask for the samples locations that needs evaluation
locs = 0xFF;
if (x + 4 > width) {
locs >>= (x + 4 - width) << 1; // limits width
}
locs = height > 1 ? locs : (locs & 0x55); // limits height
if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
"VLC code produces significant samples outside "
"the codeblock area.\n");
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
//first quad, starting at first sample in quad and moving on
if (qinf[0] & 0x10) { //is it significant? (sigma_n)
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn); //get 32 bits of magsgn data
m_n = U_q[0] - ((qinf[0] >> 12) & 1); //evaluate m_n (number of bits
// to read from bitstream), using EMB e_k
frwd_advance(&magsgn, m_n); //consume m_n
val = ms_val << 31; //get sign bit
v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits
v_n |= ((qinf[0] & 0x100) >> 8) << m_n; //add EMB e_1 as MSB
v_n |= 1; //add center of bin
//v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit
//add 2 to make it 2*\mu+0.5, shift it up to missing MSBs
sp[0] = val | ((v_n + 2) << (p - 1));
} else if (locs & 0x1) { // if this is inside the codeblock, set the
sp[0] = 0; // sample to zero
}
if (qinf[0] & 0x20) { //sigma_n
OPJ_UINT32 val, t;
ms_val = frwd_fetch(&magsgn); //get 32 bits
m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n, uses EMB e_k
frwd_advance(&magsgn, m_n); //consume m_n
val = ms_val << 31; //get sign bit
v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits
v_n |= ((qinf[0] & 0x200) >> 9) << m_n; //add EMB e_1
v_n |= 1; //bin center
//v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit
//add 2 to make it 2*\mu+0.5, shift it up to missing MSBs
sp[stride] = val | ((v_n + 2) << (p - 1));
//update line_state: bit 7 (\sigma^N), and E^N
t = lsp[0] & 0x7F; // keep E^NW
v_n = 32 - count_leading_zeros(v_n);
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s
} else if (locs & 0x2) { // if this is inside the codeblock, set the
sp[stride] = 0; // sample to zero
}
++lsp; // move to next quad information
++sp; // move to next column of samples
//this is similar to the above two samples
if (qinf[0] & 0x40) {
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[0] - ((qinf[0] >> 14) & 1);
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[0] & 0x400) >> 10) << m_n);
v_n |= 1;
sp[0] = val | ((v_n + 2) << (p - 1));
} else if (locs & 0x4) {
sp[0] = 0;
}
lsp[0] = 0;
if (qinf[0] & 0x80) {
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= ((qinf[0] & 0x800) >> 11) << m_n;
v_n |= 1; //center of bin
sp[stride] = val | ((v_n + 2) << (p - 1));
//line_state: bit 7 (\sigma^NW), and E^NW for next quad
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
} else if (locs & 0x8) { //if outside set to 0
sp[stride] = 0;
}
++sp; //move to next column
//second quad
if (qinf[1] & 0x10) {
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[1] & 0x100) >> 8) << m_n);
v_n |= 1;
sp[0] = val | ((v_n + 2) << (p - 1));
} else if (locs & 0x10) {
sp[0] = 0;
}
if (qinf[1] & 0x20) {
OPJ_UINT32 val, t;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[1] & 0x200) >> 9) << m_n);
v_n |= 1;
sp[stride] = val | ((v_n + 2) << (p - 1));
//update line_state: bit 7 (\sigma^N), and E^N
t = lsp[0] & 0x7F; //E^NW
v_n = 32 - count_leading_zeros(v_n); //E^N
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s
} else if (locs & 0x20) {
sp[stride] = 0; //no need to update line_state
}
++lsp; //move line state to next quad
++sp; //move to next sample
if (qinf[1] & 0x40) {
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[1] & 0x400) >> 10) << m_n);
v_n |= 1;
sp[0] = val | ((v_n + 2) << (p - 1));
} else if (locs & 0x40) {
sp[0] = 0;
}
lsp[0] = 0;
if (qinf[1] & 0x80) {
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[1] & 0x800) >> 11) << m_n);
v_n |= 1; //center of bin
sp[stride] = val | ((v_n + 2) << (p - 1));
//line_state: bit 7 (\sigma^NW), and E^NW for next quad
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
} else if (locs & 0x80) {
sp[stride] = 0;
}
++sp;
}
//non-initial lines
//////////////////////////
for (y = 2; y < height; /*done at the end of loop*/) {
OPJ_UINT32 *sip;
OPJ_UINT8 ls0;
OPJ_INT32 x;
sip_shift ^= 0x2; // shift sigma to the upper half od the nibble
sip_shift &= 0xFFFFFFEFU; //move back to 0 (it might have been at 0x10)
sip = y & 0x4 ? sigma2 : sigma1; //choose sigma array
lsp = line_state;
ls0 = lsp[0]; // read the line state value
lsp[0] = 0; // and set it to zero
sp = decoded_data + y * stride; // generated samples
c_q = 0; // context
for (x = 0; x < width; x += 4) {
OPJ_UINT32 U_q[2];
OPJ_UINT32 uvlc_mode, consumed_bits;
OPJ_UINT32 m_n, v_n;
OPJ_UINT32 ms_val;
OPJ_UINT32 locs;
// decode vlc
/////////////
//first quad
// get context, eqn. 2 ITU T.814
// c_q has \sigma^W | \sigma^SW
c_q |= (ls0 >> 7); //\sigma^NW | \sigma^N
c_q |= (lsp[1] >> 5) & 0x4; //\sigma^NE | \sigma^NF
//the following is very similar to previous code, so please refer to
// that
vlc_val = rev_fetch(&vlc);
qinf[0] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)];
if (c_q == 0) { //zero context
run -= 2;
qinf[0] = (run == -1) ? qinf[0] : 0;
if (run < 0) {
run = mel_get_run(&mel);
}
}
//prepare context for the next quad, \sigma^W | \sigma^SW
c_q = ((qinf[0] & 0x40) >> 5) | ((qinf[0] & 0x80) >> 6);
//remove data from vlc stream
vlc_val = rev_advance(&vlc, qinf[0] & 0x7);
//update sigma
// The update depends on the value of x and y; consider one OPJ_UINT32
// if x is 0, 8, 16 and so on, and y is 2, 6, etc., then this
// line update c locations
// nibble (4 bits) number 0 1 2 3 4 5 6 7
// LSB 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0
// c c 0 0 0 0 0 0
// c c 0 0 0 0 0 0
*sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift;
//second quad
qinf[1] = 0;
if (x + 2 < width) {
c_q |= (lsp[1] >> 7);
c_q |= (lsp[2] >> 5) & 0x4;
qinf[1] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)];
if (c_q == 0) { //zero context
run -= 2;
qinf[1] = (run == -1) ? qinf[1] : 0;
if (run < 0) {
run = mel_get_run(&mel);
}
}
//prepare context for the next quad
c_q = ((qinf[1] & 0x40) >> 5) | ((qinf[1] & 0x80) >> 6);
//remove data from vlc stream
vlc_val = rev_advance(&vlc, qinf[1] & 0x7);
}
//update sigma
*sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift);
sip += x & 0x7 ? 1 : 0;
sip_shift ^= 0x10;
//retrieve u
////////////
uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2);
consumed_bits = decode_noninit_uvlc(vlc_val, uvlc_mode, U_q);
vlc_val = rev_advance(&vlc, consumed_bits);
//calculate E^max and add it to U_q, eqns 5 and 6 in ITU T.814
if ((qinf[0] & 0xF0) & ((qinf[0] & 0xF0) - 1)) { // is \gamma_q 1?
OPJ_UINT32 E = (ls0 & 0x7Fu);
E = E > (lsp[1] & 0x7Fu) ? E : (lsp[1] & 0x7Fu); //max(E, E^NE, E^NF)
//since U_q already has u_q + 1, we subtract 2 instead of 1
U_q[0] += E > 2 ? E - 2 : 0;
}
if ((qinf[1] & 0xF0) & ((qinf[1] & 0xF0) - 1)) { //is \gamma_q 1?
OPJ_UINT32 E = (lsp[1] & 0x7Fu);
E = E > (lsp[2] & 0x7Fu) ? E : (lsp[2] & 0x7Fu); //max(E, E^NE, E^NF)
//since U_q already has u_q + 1, we subtract 2 instead of 1
U_q[1] += E > 2 ? E - 2 : 0;
}
if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
"Decoding this codeblock is stopped. U_q is"
"larger than bitplanes + 1 \n");
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
ls0 = lsp[2]; //for next double quad
lsp[1] = lsp[2] = 0;
//decode magsgn and update line_state
/////////////////////////////////////
//locations where samples need update
locs = 0xFF;
if (x + 4 > width) {
locs >>= (x + 4 - width) << 1;
}
locs = y + 2 <= height ? locs : (locs & 0x55);
if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) {
if (p_manager_mutex) {
opj_mutex_lock(p_manager_mutex);
}
opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
"VLC code produces significant samples outside "
"the codeblock area.\n");
if (p_manager_mutex) {
opj_mutex_unlock(p_manager_mutex);
}
return OPJ_FALSE;
}
if (qinf[0] & 0x10) { //sigma_n
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[0] - ((qinf[0] >> 12) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= ((qinf[0] & 0x100) >> 8) << m_n;
v_n |= 1; //center of bin
sp[0] = val | ((v_n + 2) << (p - 1));
} else if (locs & 0x1) {
sp[0] = 0;
}
if (qinf[0] & 0x20) { //sigma_n
OPJ_UINT32 val, t;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= ((qinf[0] & 0x200) >> 9) << m_n;
v_n |= 1; //center of bin
sp[stride] = val | ((v_n + 2) << (p - 1));
//update line_state: bit 7 (\sigma^N), and E^N
t = lsp[0] & 0x7F; //E^NW
v_n = 32 - count_leading_zeros(v_n);
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n));
} else if (locs & 0x2) {
sp[stride] = 0; //no need to update line_state
}
++lsp;
++sp;
if (qinf[0] & 0x40) { //sigma_n
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[0] - ((qinf[0] >> 14) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[0] & 0x400) >> 10) << m_n);
v_n |= 1; //center of bin
sp[0] = val | ((v_n + 2) << (p - 1));
} else if (locs & 0x4) {
sp[0] = 0;
}
if (qinf[0] & 0x80) { //sigma_n
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= ((qinf[0] & 0x800) >> 11) << m_n;
v_n |= 1; //center of bin
sp[stride] = val | ((v_n + 2) << (p - 1));
//update line_state: bit 7 (\sigma^NW), and E^NW for next quad
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
} else if (locs & 0x8) {
sp[stride] = 0;
}
++sp;
if (qinf[1] & 0x10) { //sigma_n
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[1] & 0x100) >> 8) << m_n);
v_n |= 1; //center of bin
sp[0] = val | ((v_n + 2) << (p - 1));
} else if (locs & 0x10) {
sp[0] = 0;
}
if (qinf[1] & 0x20) { //sigma_n
OPJ_UINT32 val, t;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[1] & 0x200) >> 9) << m_n);
v_n |= 1; //center of bin
sp[stride] = val | ((v_n + 2) << (p - 1));
//update line_state: bit 7 (\sigma^N), and E^N
t = lsp[0] & 0x7F; //E^NW
v_n = 32 - count_leading_zeros(v_n);
lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n));
} else if (locs & 0x20) {
sp[stride] = 0; //no need to update line_state
}
++lsp;
++sp;
if (qinf[1] & 0x40) { //sigma_n
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[1] & 0x400) >> 10) << m_n);
v_n |= 1; //center of bin
sp[0] = val | ((v_n + 2) << (p - 1));
} else if (locs & 0x40) {
sp[0] = 0;
}
if (qinf[1] & 0x80) { //sigma_n
OPJ_UINT32 val;
ms_val = frwd_fetch(&magsgn);
m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n
frwd_advance(&magsgn, m_n);
val = ms_val << 31;
v_n = ms_val & ((1U << m_n) - 1);
v_n |= (((qinf[1] & 0x800) >> 11) << m_n);
v_n |= 1; //center of bin
sp[stride] = val | ((v_n + 2) << (p - 1));
//update line_state: bit 7 (\sigma^NW), and E^NW for next quad
lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
} else if (locs & 0x80) {
sp[stride] = 0;
}
++sp;
}
y += 2;
if (num_passes > 1 && (y & 3) == 0) { //executed at multiples of 4
// This is for SPP and potentially MRP
if (num_passes > 2) { //do MRP
// select the current stripe
OPJ_UINT32 *cur_sig = y & 0x4 ? sigma1 : sigma2;
// the address of the data that needs updating
OPJ_UINT32 *dpp = decoded_data + (y - 4) * stride;
OPJ_UINT32 half = 1u << (p - 2); // half the center of the bin
OPJ_INT32 i;
for (i = 0; i < width; i += 8) {
//Process one entry from sigma array at a time
// Each nibble (4 bits) in the sigma array represents 4 rows,
// and the 32 bits contain 8 columns
OPJ_UINT32 cwd = rev_fetch_mrp(&magref); // get 32 bit data
OPJ_UINT32 sig = *cur_sig++; // 32 bit that will be processed now
OPJ_UINT32 col_mask = 0xFu; // a mask for a column in sig
OPJ_UINT32 *dp = dpp + i; // next column in decode samples
if (sig) { // if any of the 32 bits are set
int j;
for (j = 0; j < 8; ++j, dp++) { //one column at a time
if (sig & col_mask) { // lowest nibble
OPJ_UINT32 sample_mask = 0x11111111u & col_mask; //LSB
if (sig & sample_mask) { //if LSB is set
OPJ_UINT32 sym;
assert(dp[0] != 0); // decoded value cannot be zero
sym = cwd & 1; // get it value
// remove center of bin if sym is 0
dp[0] ^= (1 - sym) << (p - 1);
dp[0] |= half; // put half the center of bin
cwd >>= 1; //consume word
}
sample_mask += sample_mask; //next row
if (sig & sample_mask) {
OPJ_UINT32 sym;
assert(dp[stride] != 0);
sym = cwd & 1;
dp[stride] ^= (1 - sym) << (p - 1);
dp[stride] |= half;
cwd >>= 1;
}
sample_mask += sample_mask;
if (sig & sample_mask) {
OPJ_UINT32 sym;
assert(dp[2 * stride] != 0);
sym = cwd & 1;
dp[2 * stride] ^= (1 - sym) << (p - 1);
dp[2 * stride] |= half;
cwd >>= 1;
}
sample_mask += sample_mask;
if (sig & sample_mask) {
OPJ_UINT32 sym;
assert(dp[3 * stride] != 0);
sym = cwd & 1;
dp[3 * stride] ^= (1 - sym) << (p - 1);
dp[3 * stride] |= half;
cwd >>= 1;
}
sample_mask += sample_mask;
}
col_mask <<= 4; //next column
}
}
// consume data according to the number of bits set
rev_advance_mrp(&magref, population_count(sig));
}
}
if (y >= 4) { // update mbr array at the end of each stripe
//generate mbr corresponding to a stripe
OPJ_UINT32 *sig = y & 0x4 ? sigma1 : sigma2;
OPJ_UINT32 *mbr = y & 0x4 ? mbr1 : mbr2;
//data is processed in patches of 8 columns, each
// each 32 bits in sigma1 or mbr1 represent 4 rows
//integrate horizontally
OPJ_UINT32 prev = 0; // previous columns
OPJ_INT32 i;
for (i = 0; i < width; i += 8, mbr++, sig++) {
OPJ_UINT32 t, z;
mbr[0] = sig[0]; //start with significant samples
mbr[0] |= prev >> 28; //for first column, left neighbors
mbr[0] |= sig[0] << 4; //left neighbors
mbr[0] |= sig[0] >> 4; //right neighbors
mbr[0] |= sig[1] << 28; //for last column, right neighbors
prev = sig[0]; // for next group of columns
//integrate vertically
t = mbr[0], z = mbr[0];
z |= (t & 0x77777777) << 1; //above neighbors
z |= (t & 0xEEEEEEEE) >> 1; //below neighbors
mbr[0] = z & ~sig[0]; //remove already significance samples
}
}
if (y >= 8) { //wait until 8 rows has been processed
OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr;
OPJ_UINT32 prev;
OPJ_UINT32 val;
OPJ_INT32 i;
// add membership from the next stripe, obtained above
cur_sig = y & 0x4 ? sigma2 : sigma1;
cur_mbr = y & 0x4 ? mbr2 : mbr1;
nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples
prev = 0; // the columns before these group of 8 columns
for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) {
OPJ_UINT32 t = nxt_sig[0];
t |= prev >> 28; //for first column, left neighbors
t |= nxt_sig[0] << 4; //left neighbors
t |= nxt_sig[0] >> 4; //right neighbors
t |= nxt_sig[1] << 28; //for last column, right neighbors
prev = nxt_sig[0]; // for next group of columns
if (!stripe_causal) {
cur_mbr[0] |= (t & 0x11111111u) << 3; //propagate up to cur_mbr
}
cur_mbr[0] &= ~cur_sig[0]; //remove already significance samples
}
//find new locations and get signs
cur_sig = y & 0x4 ? sigma2 : sigma1;
cur_mbr = y & 0x4 ? mbr2 : mbr1;
nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples
nxt_mbr = y & 0x4 ? mbr1 : mbr2; //future samples
val = 3u << (p - 2); // sample values for newly discovered
// significant samples including the bin center
for (i = 0; i < width;
i += 8, cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) {
OPJ_UINT32 ux, tx;
OPJ_UINT32 mbr = *cur_mbr;
OPJ_UINT32 new_sig = 0;
if (mbr) { //are there any samples that might be significant
OPJ_INT32 n;
for (n = 0; n < 8; n += 4) {
OPJ_UINT32 col_mask;
OPJ_UINT32 inv_sig;
OPJ_INT32 end;
OPJ_INT32 j;
OPJ_UINT32 cwd = frwd_fetch(&sigprop); //get 32 bits
OPJ_UINT32 cnt = 0;
OPJ_UINT32 *dp = decoded_data + (y - 8) * stride;
dp += i + n; //address for decoded samples
col_mask = 0xFu << (4 * n); //a mask to select a column
inv_sig = ~cur_sig[0]; // insignificant samples
//find the last sample we operate on
end = n + 4 + i < width ? n + 4 : width - i;
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
OPJ_UINT32 sample_mask;
if ((col_mask & mbr) == 0) { //no samples need checking
continue;
}
//scan mbr to find a new significant sample
sample_mask = 0x11111111u & col_mask; // LSB
if (mbr & sample_mask) {
assert(dp[0] == 0); // the sample must have been 0
if (cwd & 1) { //if this sample has become significant
// must propagate it to nearby samples
OPJ_UINT32 t;
new_sig |= sample_mask; // new significant samples
t = 0x32u << (j * 4);// propagation to neighbors
mbr |= t & inv_sig; //remove already significant samples
}
cwd >>= 1;
++cnt; //consume bit and increment number of
//consumed bits
}
sample_mask += sample_mask; // next row
if (mbr & sample_mask) {
assert(dp[stride] == 0);
if (cwd & 1) {
OPJ_UINT32 t;
new_sig |= sample_mask;
t = 0x74u << (j * 4);
mbr |= t & inv_sig;
}
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (mbr & sample_mask) {
assert(dp[2 * stride] == 0);
if (cwd & 1) {
OPJ_UINT32 t;
new_sig |= sample_mask;
t = 0xE8u << (j * 4);
mbr |= t & inv_sig;
}
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (mbr & sample_mask) {
assert(dp[3 * stride] == 0);
if (cwd & 1) {
OPJ_UINT32 t;
new_sig |= sample_mask;
t = 0xC0u << (j * 4);
mbr |= t & inv_sig;
}
cwd >>= 1;
++cnt;
}
}
//obtain signs here
if (new_sig & (0xFFFFu << (4 * n))) { //if any
OPJ_UINT32 col_mask;
OPJ_INT32 j;
OPJ_UINT32 *dp = decoded_data + (y - 8) * stride;
dp += i + n; // decoded samples address
col_mask = 0xFu << (4 * n); //mask to select a column
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
OPJ_UINT32 sample_mask;
if ((col_mask & new_sig) == 0) { //if non is significant
continue;
}
//scan 4 signs
sample_mask = 0x11111111u & col_mask;
if (new_sig & sample_mask) {
assert(dp[0] == 0);
dp[0] |= ((cwd & 1) << 31) | val; //put value and sign
cwd >>= 1;
++cnt; //consume bit and increment number
//of consumed bits
}
sample_mask += sample_mask;
if (new_sig & sample_mask) {
assert(dp[stride] == 0);
dp[stride] |= ((cwd & 1) << 31) | val;
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (new_sig & sample_mask) {
assert(dp[2 * stride] == 0);
dp[2 * stride] |= ((cwd & 1) << 31) | val;
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (new_sig & sample_mask) {
assert(dp[3 * stride] == 0);
dp[3 * stride] |= ((cwd & 1) << 31) | val;
cwd >>= 1;
++cnt;
}
}
}
frwd_advance(&sigprop, cnt); //consume the bits from bitstrm
cnt = 0;
//update the next 8 columns
if (n == 4) {
//horizontally
OPJ_UINT32 t = new_sig >> 28;
t |= ((t & 0xE) >> 1) | ((t & 7) << 1);
cur_mbr[1] |= t & ~cur_sig[1];
}
}
}
//update the next stripe (vertically propagation)
new_sig |= cur_sig[0];
ux = (new_sig & 0x88888888) >> 3;
tx = ux | (ux << 4) | (ux >> 4); //left and right neighbors
if (i > 0) {
nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1];
}
nxt_mbr[0] |= tx & ~nxt_sig[0];
nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1];
}
//clear current sigma
//mbr need not be cleared because it is overwritten
cur_sig = y & 0x4 ? sigma2 : sigma1;
memset(cur_sig, 0, ((((OPJ_UINT32)width + 7u) >> 3) + 1u) << 2);
}
}
}
//terminating
if (num_passes > 1) {
OPJ_INT32 st, y;
if (num_passes > 2 && ((height & 3) == 1 || (height & 3) == 2)) {
//do magref
OPJ_UINT32 *cur_sig = height & 0x4 ? sigma2 : sigma1; //reversed
OPJ_UINT32 *dpp = decoded_data + (height & 0xFFFFFC) * stride;
OPJ_UINT32 half = 1u << (p - 2);
OPJ_INT32 i;
for (i = 0; i < width; i += 8) {
OPJ_UINT32 cwd = rev_fetch_mrp(&magref);
OPJ_UINT32 sig = *cur_sig++;
OPJ_UINT32 col_mask = 0xF;
OPJ_UINT32 *dp = dpp + i;
if (sig) {
int j;
for (j = 0; j < 8; ++j, dp++) {
if (sig & col_mask) {
OPJ_UINT32 sample_mask = 0x11111111 & col_mask;
if (sig & sample_mask) {
OPJ_UINT32 sym;
assert(dp[0] != 0);
sym = cwd & 1;
dp[0] ^= (1 - sym) << (p - 1);
dp[0] |= half;
cwd >>= 1;
}
sample_mask += sample_mask;
if (sig & sample_mask) {
OPJ_UINT32 sym;
assert(dp[stride] != 0);
sym = cwd & 1;
dp[stride] ^= (1 - sym) << (p - 1);
dp[stride] |= half;
cwd >>= 1;
}
sample_mask += sample_mask;
if (sig & sample_mask) {
OPJ_UINT32 sym;
assert(dp[2 * stride] != 0);
sym = cwd & 1;
dp[2 * stride] ^= (1 - sym) << (p - 1);
dp[2 * stride] |= half;
cwd >>= 1;
}
sample_mask += sample_mask;
if (sig & sample_mask) {
OPJ_UINT32 sym;
assert(dp[3 * stride] != 0);
sym = cwd & 1;
dp[3 * stride] ^= (1 - sym) << (p - 1);
dp[3 * stride] |= half;
cwd >>= 1;
}
sample_mask += sample_mask;
}
col_mask <<= 4;
}
}
rev_advance_mrp(&magref, population_count(sig));
}
}
//do the last incomplete stripe
// for cases of (height & 3) == 0 and 3
// the should have been processed previously
if ((height & 3) == 1 || (height & 3) == 2) {
//generate mbr of first stripe
OPJ_UINT32 *sig = height & 0x4 ? sigma2 : sigma1;
OPJ_UINT32 *mbr = height & 0x4 ? mbr2 : mbr1;
//integrate horizontally
OPJ_UINT32 prev = 0;
OPJ_INT32 i;
for (i = 0; i < width; i += 8, mbr++, sig++) {
OPJ_UINT32 t, z;
mbr[0] = sig[0];
mbr[0] |= prev >> 28; //for first column, left neighbors
mbr[0] |= sig[0] << 4; //left neighbors
mbr[0] |= sig[0] >> 4; //left neighbors
mbr[0] |= sig[1] << 28; //for last column, right neighbors
prev = sig[0];
//integrate vertically
t = mbr[0], z = mbr[0];
z |= (t & 0x77777777) << 1; //above neighbors
z |= (t & 0xEEEEEEEE) >> 1; //below neighbors
mbr[0] = z & ~sig[0]; //remove already significance samples
}
}
st = height;
st -= height > 6 ? (((height + 1) & 3) + 3) : height;
for (y = st; y < height; y += 4) {
OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr;
OPJ_UINT32 val;
OPJ_INT32 i;
OPJ_UINT32 pattern = 0xFFFFFFFFu; // a pattern needed samples
if (height - y == 3) {
pattern = 0x77777777u;
} else if (height - y == 2) {
pattern = 0x33333333u;
} else if (height - y == 1) {
pattern = 0x11111111u;
}
//add membership from the next stripe, obtained above
if (height - y > 4) {
OPJ_UINT32 prev = 0;
OPJ_INT32 i;
cur_sig = y & 0x4 ? sigma2 : sigma1;
cur_mbr = y & 0x4 ? mbr2 : mbr1;
nxt_sig = y & 0x4 ? sigma1 : sigma2;
for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) {
OPJ_UINT32 t = nxt_sig[0];
t |= prev >> 28; //for first column, left neighbors
t |= nxt_sig[0] << 4; //left neighbors
t |= nxt_sig[0] >> 4; //left neighbors
t |= nxt_sig[1] << 28; //for last column, right neighbors
prev = nxt_sig[0];
if (!stripe_causal) {
cur_mbr[0] |= (t & 0x11111111u) << 3;
}
//remove already significance samples
cur_mbr[0] &= ~cur_sig[0];
}
}
//find new locations and get signs
cur_sig = y & 0x4 ? sigma2 : sigma1;
cur_mbr = y & 0x4 ? mbr2 : mbr1;
nxt_sig = y & 0x4 ? sigma1 : sigma2;
nxt_mbr = y & 0x4 ? mbr1 : mbr2;
val = 3u << (p - 2);
for (i = 0; i < width; i += 8,
cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) {
OPJ_UINT32 mbr = *cur_mbr & pattern; //skip unneeded samples
OPJ_UINT32 new_sig = 0;
OPJ_UINT32 ux, tx;
if (mbr) {
OPJ_INT32 n;
for (n = 0; n < 8; n += 4) {
OPJ_UINT32 col_mask;
OPJ_UINT32 inv_sig;
OPJ_INT32 end;
OPJ_INT32 j;
OPJ_UINT32 cwd = frwd_fetch(&sigprop);
OPJ_UINT32 cnt = 0;
OPJ_UINT32 *dp = decoded_data + y * stride;
dp += i + n;
col_mask = 0xFu << (4 * n);
inv_sig = ~cur_sig[0] & pattern;
end = n + 4 + i < width ? n + 4 : width - i;
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
OPJ_UINT32 sample_mask;
if ((col_mask & mbr) == 0) {
continue;
}
//scan 4 mbr
sample_mask = 0x11111111u & col_mask;
if (mbr & sample_mask) {
assert(dp[0] == 0);
if (cwd & 1) {
OPJ_UINT32 t;
new_sig |= sample_mask;
t = 0x32u << (j * 4);
mbr |= t & inv_sig;
}
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (mbr & sample_mask) {
assert(dp[stride] == 0);
if (cwd & 1) {
OPJ_UINT32 t;
new_sig |= sample_mask;
t = 0x74u << (j * 4);
mbr |= t & inv_sig;
}
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (mbr & sample_mask) {
assert(dp[2 * stride] == 0);
if (cwd & 1) {
OPJ_UINT32 t;
new_sig |= sample_mask;
t = 0xE8u << (j * 4);
mbr |= t & inv_sig;
}
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (mbr & sample_mask) {
assert(dp[3 * stride] == 0);
if (cwd & 1) {
OPJ_UINT32 t;
new_sig |= sample_mask;
t = 0xC0u << (j * 4);
mbr |= t & inv_sig;
}
cwd >>= 1;
++cnt;
}
}
//signs here
if (new_sig & (0xFFFFu << (4 * n))) {
OPJ_UINT32 col_mask;
OPJ_INT32 j;
OPJ_UINT32 *dp = decoded_data + y * stride;
dp += i + n;
col_mask = 0xFu << (4 * n);
for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
OPJ_UINT32 sample_mask;
if ((col_mask & new_sig) == 0) {
continue;
}
//scan 4 signs
sample_mask = 0x11111111u & col_mask;
if (new_sig & sample_mask) {
assert(dp[0] == 0);
dp[0] |= ((cwd & 1) << 31) | val;
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (new_sig & sample_mask) {
assert(dp[stride] == 0);
dp[stride] |= ((cwd & 1) << 31) | val;
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (new_sig & sample_mask) {
assert(dp[2 * stride] == 0);
dp[2 * stride] |= ((cwd & 1) << 31) | val;
cwd >>= 1;
++cnt;
}
sample_mask += sample_mask;
if (new_sig & sample_mask) {
assert(dp[3 * stride] == 0);
dp[3 * stride] |= ((cwd & 1) << 31) | val;
cwd >>= 1;
++cnt;
}
}
}
frwd_advance(&sigprop, cnt);
cnt = 0;
//update next columns
if (n == 4) {
//horizontally
OPJ_UINT32 t = new_sig >> 28;
t |= ((t & 0xE) >> 1) | ((t & 7) << 1);
cur_mbr[1] |= t & ~cur_sig[1];
}
}
}
//propagate down (vertically propagation)
new_sig |= cur_sig[0];
ux = (new_sig & 0x88888888) >> 3;
tx = ux | (ux << 4) | (ux >> 4);
if (i > 0) {
nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1];
}
nxt_mbr[0] |= tx & ~nxt_sig[0];
nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1];
}
}
}
{
OPJ_INT32 x, y;
for (y = 0; y < height; ++y) {
OPJ_INT32* sp = (OPJ_INT32*)decoded_data + y * stride;
for (x = 0; x < width; ++x, ++sp) {
OPJ_INT32 val = (*sp & 0x7FFFFFFF);
*sp = ((OPJ_UINT32) * sp & 0x80000000) ? -val : val;
}
}
}
return OPJ_TRUE;
}