opencv/doc/tutorials/features2d/akaze_matching/akaze_matching.markdown

134 lines
4.0 KiB
Markdown
Raw Normal View History

2014-11-27 20:39:05 +08:00
AKAZE local features matching {#tutorial_akaze_matching}
=============================
Introduction
------------
2014-11-28 21:21:28 +08:00
In this tutorial we will learn how to use AKAZE @cite ANB13 local features to detect and match keypoints on
2014-11-27 20:39:05 +08:00
two images.
We will find keypoints on a pair of images with given homography matrix, match them and count the
2014-11-28 21:21:28 +08:00
2014-11-27 20:39:05 +08:00
number of inliers (i. e. matches that fit in the given homography).
You can find expanded version of this example here:
<https://github.com/pablofdezalc/test_kaze_akaze_opencv>
Data
----
We are going to use images 1 and 3 from *Graffity* sequence of Oxford dataset.
2014-11-28 21:21:28 +08:00
![](images/graf.png)
2014-11-27 20:39:05 +08:00
Homography is given by a 3 by 3 matrix:
@code{.none}
7.6285898e-01 -2.9922929e-01 2.2567123e+02
3.3443473e-01 1.0143901e+00 -7.6999973e+01
3.4663091e-04 -1.4364524e-05 1.0000000e+00
@endcode
You can find the images (*graf1.png*, *graf3.png*) and homography (*H1to3p.xml*) in
*opencv/samples/cpp*.
### Source Code
@includelineno cpp/tutorial_code/features2D/AKAZE_match.cpp
### Explanation
2014-11-28 21:21:28 +08:00
-# **Load images and homography**
@code{.cpp}
Mat img1 = imread("graf1.png", IMREAD_GRAYSCALE);
Mat img2 = imread("graf3.png", IMREAD_GRAYSCALE);
Mat homography;
FileStorage fs("H1to3p.xml", FileStorage::READ);
fs.getFirstTopLevelNode() >> homography;
@endcode
We are loading grayscale images here. Homography is stored in the xml created with FileStorage.
-# **Detect keypoints and compute descriptors using AKAZE**
@code{.cpp}
vector<KeyPoint> kpts1, kpts2;
Mat desc1, desc2;
AKAZE akaze;
akaze(img1, noArray(), kpts1, desc1);
akaze(img2, noArray(), kpts2, desc2);
@endcode
We create AKAZE object and use it's *operator()* functionality. Since we don't need the *mask*
parameter, *noArray()* is used.
-# **Use brute-force matcher to find 2-nn matches**
@code{.cpp}
BFMatcher matcher(NORM_HAMMING);
vector< vector<DMatch> > nn_matches;
matcher.knnMatch(desc1, desc2, nn_matches, 2);
@endcode
We use Hamming distance, because AKAZE uses binary descriptor by default.
-# **Use 2-nn matches to find correct keypoint matches**
@code{.cpp}
for(size_t i = 0; i < nn_matches.size(); i++) {
DMatch first = nn_matches[i][0];
float dist1 = nn_matches[i][0].distance;
float dist2 = nn_matches[i][1].distance;
if(dist1 < nn_match_ratio * dist2) {
matched1.push_back(kpts1[first.queryIdx]);
matched2.push_back(kpts2[first.trainIdx]);
}
2014-11-27 20:39:05 +08:00
}
2014-11-28 21:21:28 +08:00
@endcode
If the closest match is *ratio* closer than the second closest one, then the match is correct.
-# **Check if our matches fit in the homography model**
@code{.cpp}
for(int i = 0; i < matched1.size(); i++) {
Mat col = Mat::ones(3, 1, CV_64F);
col.at<double>(0) = matched1[i].pt.x;
col.at<double>(1) = matched1[i].pt.y;
col = homography * col;
col /= col.at<double>(2);
float dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) +
pow(col.at<double>(1) - matched2[i].pt.y, 2));
if(dist < inlier_threshold) {
int new_i = inliers1.size();
inliers1.push_back(matched1[i]);
inliers2.push_back(matched2[i]);
good_matches.push_back(DMatch(new_i, new_i, 0));
}
2014-11-27 20:39:05 +08:00
}
2014-11-28 21:21:28 +08:00
@endcode
If the distance from first keypoint's projection to the second keypoint is less than threshold,
then it it fits in the homography.
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
We create a new set of matches for the inliers, because it is required by the drawing function.
2014-11-27 20:39:05 +08:00
2014-11-28 21:21:28 +08:00
-# **Output results**
@code{.cpp}
Mat res;
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
imwrite("res.png", res);
...
@endcode
Here we save the resulting image and print some statistics.
2014-11-27 20:39:05 +08:00
### Results
Found matches
-------------
2014-11-28 21:21:28 +08:00
![](images/res.png)
2014-11-27 20:39:05 +08:00
A-KAZE Matching Results
-----------------------
@code{.none}
Keypoints 1: 2943
Keypoints 2: 3511
Matches: 447
Inliers: 308
Inlier Ratio: 0.689038}
@endcode