opencv/modules/core/src/merge.dispatch.cpp

274 lines
7.8 KiB
C++
Raw Normal View History

2018-02-06 20:02:51 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "precomp.hpp"
2018-02-06 20:02:51 +08:00
#include "opencl_kernels_core.hpp"
2019-02-22 19:17:18 +08:00
#include "merge.simd.hpp"
#include "merge.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
2019-02-22 19:17:18 +08:00
namespace cv { namespace hal {
void merge8u(const uchar** src, uchar* dst, int len, int cn )
{
2019-02-22 19:17:18 +08:00
CV_INSTRUMENT_REGION();
2015-12-15 20:55:43 +08:00
CALL_HAL(merge8u, cv_hal_merge8u, src, dst, len, cn)
2019-02-22 19:17:18 +08:00
CV_CPU_DISPATCH(merge8u, (src, dst, len, cn),
CV_CPU_DISPATCH_MODES_ALL);
}
void merge16u(const ushort** src, ushort* dst, int len, int cn )
{
2019-02-22 19:17:18 +08:00
CV_INSTRUMENT_REGION();
2015-12-15 20:55:43 +08:00
CALL_HAL(merge16u, cv_hal_merge16u, src, dst, len, cn)
2019-02-22 19:17:18 +08:00
CV_CPU_DISPATCH(merge16u, (src, dst, len, cn),
CV_CPU_DISPATCH_MODES_ALL);
}
void merge32s(const int** src, int* dst, int len, int cn )
{
2019-02-22 19:17:18 +08:00
CV_INSTRUMENT_REGION();
2015-12-15 20:55:43 +08:00
CALL_HAL(merge32s, cv_hal_merge32s, src, dst, len, cn)
2019-02-22 19:17:18 +08:00
CV_CPU_DISPATCH(merge32s, (src, dst, len, cn),
CV_CPU_DISPATCH_MODES_ALL);
}
void merge64s(const int64** src, int64* dst, int len, int cn )
{
2019-02-22 19:17:18 +08:00
CV_INSTRUMENT_REGION();
2015-12-15 20:55:43 +08:00
CALL_HAL(merge64s, cv_hal_merge64s, src, dst, len, cn)
2019-02-22 19:17:18 +08:00
CV_CPU_DISPATCH(merge64s, (src, dst, len, cn),
CV_CPU_DISPATCH_MODES_ALL);
}
2019-02-22 19:17:18 +08:00
} // namespace cv::hal::
2018-02-06 20:02:51 +08:00
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);
static MergeFunc getMergeFunc(int depth)
{
static MergeFunc mergeTab[CV_DEPTH_MAX] =
2018-02-06 20:02:51 +08:00
{
(MergeFunc)GET_OPTIMIZED(cv::hal::merge8u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge8u),
(MergeFunc)GET_OPTIMIZED(cv::hal::merge16u), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u),
(MergeFunc)GET_OPTIMIZED(cv::hal::merge32s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge32s),
(MergeFunc)GET_OPTIMIZED(cv::hal::merge64s), (MergeFunc)GET_OPTIMIZED(cv::hal::merge16u)
2018-02-06 20:02:51 +08:00
};
return mergeTab[depth];
}
#ifdef HAVE_IPP
static bool ipp_merge(const Mat* mv, Mat& dst, int channels)
{
#ifdef HAVE_IPP_IW_LL
CV_INSTRUMENT_REGION_IPP();
2018-02-06 20:02:51 +08:00
if(channels != 3 && channels != 4)
return false;
if(mv[0].dims <= 2)
{
IppiSize size = ippiSize(mv[0].size());
const void *srcPtrs[4] = {NULL};
size_t srcStep = mv[0].step;
for(int i = 0; i < channels; i++)
{
srcPtrs[i] = mv[i].ptr();
if(srcStep != mv[i].step)
return false;
}
return CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, srcPtrs, (int)srcStep, dst.ptr(), (int)dst.step, size, (int)mv[0].elemSize1(), channels, 0) >= 0;
}
else
{
const Mat *arrays[5] = {NULL};
uchar *ptrs[5] = {NULL};
arrays[0] = &dst;
for(int i = 1; i < channels; i++)
{
arrays[i] = &mv[i-1];
}
NAryMatIterator it(arrays, ptrs);
IppiSize size = { (int)it.size, 1 };
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
if(CV_INSTRUMENT_FUN_IPP(llwiCopyMerge, (const void**)&ptrs[1], 0, ptrs[0], 0, size, (int)mv[0].elemSize1(), channels, 0) < 0)
return false;
}
return true;
}
#else
CV_UNUSED(dst); CV_UNUSED(mv); CV_UNUSED(channels);
return false;
#endif
}
#endif
2019-02-22 19:17:18 +08:00
void merge(const Mat* mv, size_t n, OutputArray _dst)
2018-02-06 20:02:51 +08:00
{
CV_INSTRUMENT_REGION();
2018-02-06 20:02:51 +08:00
CV_Assert( mv && n > 0 );
CV_Assert(!mv[0].empty());
2018-02-06 20:02:51 +08:00
int depth = mv[0].depth();
bool allch1 = true;
int k, cn = 0;
size_t i;
for( i = 0; i < n; i++ )
{
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth);
allch1 = allch1 && mv[i].channels() == 1;
cn += mv[i].channels();
}
CV_Assert( 0 < cn && cn <= CV_CN_MAX );
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn));
Mat dst = _dst.getMat();
if( n == 1 )
{
mv[0].copyTo(dst);
return;
}
CV_IPP_RUN(allch1, ipp_merge(mv, dst, (int)n));
2018-02-06 20:02:51 +08:00
if( !allch1 )
{
AutoBuffer<int> pairs(cn*2);
int j, ni=0;
for( i = 0, j = 0; i < n; i++, j += ni )
{
ni = mv[i].channels();
for( k = 0; k < ni; k++ )
{
pairs[(j+k)*2] = j + k;
pairs[(j+k)*2+1] = j + k;
}
}
mixChannels( mv, n, &dst, 1, &pairs[0], cn );
return;
}
MergeFunc func = getMergeFunc(depth);
CV_Assert( func != 0 );
size_t esz = dst.elemSize(), esz1 = dst.elemSize1();
size_t blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz);
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
2018-06-11 06:42:00 +08:00
const Mat** arrays = (const Mat**)_buf.data();
2018-02-06 20:02:51 +08:00
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
arrays[0] = &dst;
for( k = 0; k < cn; k++ )
arrays[k+1] = &mv[k];
NAryMatIterator it(arrays, ptrs, cn+1);
size_t total = (int)it.size;
size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0));
for( i = 0; i < it.nplanes; i++, ++it )
{
for( size_t j = 0; j < total; j += blocksize )
{
size_t bsz = std::min(total - j, blocksize);
func( (const uchar**)&ptrs[1], ptrs[0], (int)bsz, cn );
if( j + blocksize < total )
{
ptrs[0] += bsz*esz;
for( int t = 0; t < cn; t++ )
ptrs[t+1] += bsz*esz1;
}
}
}
}
#ifdef HAVE_OPENCL
static bool ocl_merge( InputArrayOfArrays _mv, OutputArray _dst )
{
std::vector<UMat> src, ksrc;
_mv.getUMatVector(src);
CV_Assert(!src.empty());
int type = src[0].type(), depth = CV_MAT_DEPTH(type),
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
Size size = src[0].size();
for (size_t i = 0, srcsize = src.size(); i < srcsize; ++i)
{
int itype = src[i].type(), icn = CV_MAT_CN(itype), idepth = CV_MAT_DEPTH(itype),
esz1 = CV_ELEM_SIZE1(idepth);
if (src[i].dims > 2)
return false;
CV_Assert(size == src[i].size() && depth == idepth);
for (int cn = 0; cn < icn; ++cn)
{
UMat tsrc = src[i];
tsrc.offset += cn * esz1;
ksrc.push_back(tsrc);
}
}
int dcn = (int)ksrc.size();
String srcargs, processelem, cndecl, indexdecl;
for (int i = 0; i < dcn; ++i)
{
srcargs += format("DECLARE_SRC_PARAM(%d)", i);
processelem += format("PROCESS_ELEM(%d)", i);
indexdecl += format("DECLARE_INDEX(%d)", i);
cndecl += format(" -D scn%d=%d", i, ksrc[i].channels());
}
ocl::Kernel k("merge", ocl::core::split_merge_oclsrc,
format("-D OP_MERGE -D cn=%d -D T=%s -D DECLARE_SRC_PARAMS_N=%s"
" -D DECLARE_INDEX_N=%s -D PROCESS_ELEMS_N=%s%s",
dcn, ocl::memopTypeToStr(depth), srcargs.c_str(),
indexdecl.c_str(), processelem.c_str(), cndecl.c_str()));
if (k.empty())
return false;
_dst.create(size, CV_MAKE_TYPE(depth, dcn));
UMat dst = _dst.getUMat();
int argidx = 0;
for (int i = 0; i < dcn; ++i)
argidx = k.set(argidx, ocl::KernelArg::ReadOnlyNoSize(ksrc[i]));
argidx = k.set(argidx, ocl::KernelArg::WriteOnly(dst));
k.set(argidx, rowsPerWI);
size_t globalsize[2] = { (size_t)dst.cols, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
#endif
2019-02-22 19:17:18 +08:00
void merge(InputArrayOfArrays _mv, OutputArray _dst)
2018-02-06 20:02:51 +08:00
{
CV_INSTRUMENT_REGION();
2018-02-06 20:02:51 +08:00
CV_OCL_RUN(_mv.isUMatVector() && _dst.isUMat(),
ocl_merge(_mv, _dst))
std::vector<Mat> mv;
_mv.getMatVector(mv);
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst);
}
2019-02-22 19:17:18 +08:00
} // namespace