opencv/modules/ml/test/test_mltests.cpp

225 lines
7.0 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace opencv_test {
CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
{
validationFN = "avalidation.xml";
}
int CV_AMLTest::run_test_case( int testCaseIdx )
{
2017-05-25 23:59:01 +08:00
CV_TRACE_FUNCTION();
int code = cvtest::TS::OK;
code = prepare_test_case( testCaseIdx );
if (code == cvtest::TS::OK)
{
//#define GET_STAT
#ifdef GET_STAT
2012-10-17 15:12:04 +08:00
const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr;
printf("%s, %s ", name, data_name);
const int icount = 100;
float res[icount];
for (int k = 0; k < icount; k++)
{
#endif
data->shuffleTrainTest();
2012-10-17 15:12:04 +08:00
code = train( testCaseIdx );
#ifdef GET_STAT
float case_result = get_error();
res[k] = case_result;
}
float mean = 0, sigma = 0;
for (int k = 0; k < icount; k++)
{
mean += res[k];
}
mean = mean /icount;
for (int k = 0; k < icount; k++)
{
sigma += (res[k] - mean)*(res[k] - mean);
}
sigma = sqrt(sigma/icount);
printf("%f, %f\n", mean, sigma);
#endif
}
return code;
}
int CV_AMLTest::validate_test_results( int testCaseIdx )
{
2017-05-25 23:59:01 +08:00
CV_TRACE_FUNCTION();
int iters;
float mean, sigma;
// read validation params
2012-10-17 15:12:04 +08:00
FileNode resultNode =
validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"];
2012-10-17 15:12:04 +08:00
resultNode["iter_count"] >> iters;
if ( iters > 0)
{
resultNode["mean"] >> mean;
resultNode["sigma"] >> sigma;
model->save(format("/Users/vp/tmp/dtree/testcase_%02d.cur.yml", testCaseIdx));
float curErr = get_test_error( testCaseIdx );
const int coeff = 4;
ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f\n",
testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma );
if ( abs( curErr - mean) > coeff*sigma )
{
ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff );
return cvtest::TS::FAIL_BAD_ACCURACY;
}
else
ts->printf( cvtest::TS::LOG, ".\n" );
}
else
{
ts->printf( cvtest::TS::LOG, "validation info is not suitable" );
return cvtest::TS::FAIL_INVALID_TEST_DATA;
}
return cvtest::TS::OK;
}
namespace {
TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); }
TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); }
TEST(DISABLED_ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); }
TEST(ML_NBAYES, regression_5911)
{
int N=12;
Ptr<ml::NormalBayesClassifier> nb = cv::ml::NormalBayesClassifier::create();
// data:
Mat_<float> X(N,4);
X << 1,2,3,4, 1,2,3,4, 1,2,3,4, 1,2,3,4,
5,5,5,5, 5,5,5,5, 5,5,5,5, 5,5,5,5,
4,3,2,1, 4,3,2,1, 4,3,2,1, 4,3,2,1;
// labels:
Mat_<int> Y(N,1);
Y << 0,0,0,0, 1,1,1,1, 2,2,2,2;
nb->train(X, ml::ROW_SAMPLE, Y);
// single prediction:
Mat R1,P1;
for (int i=0; i<N; i++)
{
Mat r,p;
nb->predictProb(X.row(i), r, p);
R1.push_back(r);
P1.push_back(p);
}
// bulk prediction (continuous memory):
Mat R2,P2;
nb->predictProb(X, R2, P2);
EXPECT_EQ(sum(R1 == R2)[0], 255 * R2.total());
EXPECT_EQ(sum(P1 == P2)[0], 255 * P2.total());
// bulk prediction, with non-continuous memory storage
Mat R3_(N, 1+1, CV_32S),
P3_(N, 3+1, CV_32F);
nb->predictProb(X, R3_.col(0), P3_.colRange(0,3));
Mat R3 = R3_.col(0).clone(),
P3 = P3_.colRange(0,3).clone();
EXPECT_EQ(sum(R1 == R3)[0], 255 * R3.total());
EXPECT_EQ(sum(P1 == P3)[0], 255 * P3.total());
}
TEST(ML_RTrees, getVotes)
{
int n = 12;
int count, i;
int label_size = 3;
int predicted_class = 0;
int max_votes = -1;
int val;
// RTrees for classification
Ptr<ml::RTrees> rt = cv::ml::RTrees::create();
//data
Mat data(n, 4, CV_32F);
randu(data, 0, 10);
//labels
Mat labels = (Mat_<int>(n,1) << 0,0,0,0, 1,1,1,1, 2,2,2,2);
rt->train(data, ml::ROW_SAMPLE, labels);
//run function
Mat test(1, 4, CV_32F);
Mat result;
randu(test, 0, 10);
rt->getVotes(test, result, 0);
//count vote amount and find highest vote
count = 0;
const int* result_row = result.ptr<int>(1);
for( i = 0; i < label_size; i++ )
{
val = result_row[i];
//predicted_class = max_votes < val? i;
if( max_votes < val )
{
max_votes = val;
predicted_class = i;
}
count += val;
}
EXPECT_EQ(count, (int)rt->getRoots().size());
EXPECT_EQ(result.at<float>(0, predicted_class), rt->predict(test));
}
}} // namespace
/* End of file. */