2013-01-09 18:29:14 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
2013-01-09 20:03:53 +08:00
|
|
|
#include <queue>
|
2013-01-09 18:29:14 +08:00
|
|
|
|
2013-01-09 21:56:32 +08:00
|
|
|
//#define WITH_DEBUG_OUT
|
2013-01-09 20:03:53 +08:00
|
|
|
|
|
|
|
#if defined WITH_DEBUG_OUT
|
|
|
|
# include <stdio.h>
|
|
|
|
# define dprintf(format, ...) \
|
|
|
|
do { printf(format, ##__VA_ARGS__); } while (0)
|
|
|
|
#else
|
|
|
|
# define dprintf(format, ...)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1600
|
|
|
|
|
|
|
|
# include <random>
|
|
|
|
namespace sft {
|
|
|
|
struct Random
|
|
|
|
{
|
|
|
|
typedef std::mt19937 engine;
|
|
|
|
typedef std::uniform_int<int> uniform;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2013-01-09 21:23:21 +08:00
|
|
|
#elif (__GNUC__) && __GNUC__ > 3 && __GNUC_MINOR__ > 1 && !defined(__ANDROID__)
|
2013-01-09 20:03:53 +08:00
|
|
|
|
|
|
|
# if defined (__cplusplus) && __cplusplus > 201100L
|
|
|
|
# include <random>
|
|
|
|
namespace sft {
|
|
|
|
struct Random
|
|
|
|
{
|
|
|
|
typedef std::mt19937 engine;
|
|
|
|
typedef std::uniform_int<int> uniform;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
# else
|
|
|
|
# include <tr1/random>
|
|
|
|
|
|
|
|
namespace sft {
|
|
|
|
struct Random
|
|
|
|
{
|
|
|
|
typedef std::tr1::mt19937 engine;
|
|
|
|
typedef std::tr1::uniform_int<int> uniform;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
# endif
|
|
|
|
|
|
|
|
#else
|
|
|
|
#include <opencv2/core/core.hpp>
|
|
|
|
namespace rnd {
|
|
|
|
|
|
|
|
typedef cv::RNG engine;
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
struct uniform_int
|
|
|
|
{
|
|
|
|
uniform_int(const int _min, const int _max) : min(_min), max(_max) {}
|
|
|
|
T operator() (engine& eng, const int bound) const
|
|
|
|
{
|
|
|
|
return (T)eng.uniform(min, bound);
|
|
|
|
}
|
|
|
|
|
|
|
|
T operator() (engine& eng) const
|
|
|
|
{
|
|
|
|
return (T)eng.uniform(min, max);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
int min;
|
|
|
|
int max;
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace sft {
|
|
|
|
struct Random
|
|
|
|
{
|
|
|
|
typedef rnd::engine engine;
|
|
|
|
typedef rnd::uniform_int<int> uniform;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
cv::FeaturePool::~FeaturePool(){}
|
|
|
|
cv::Dataset::~Dataset(){}
|
|
|
|
|
|
|
|
cv::Octave::Octave(cv::Rect bb, int np, int nn, int ls, int shr)
|
|
|
|
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
|
|
|
|
{
|
|
|
|
int maxSample = npositives + nnegatives;
|
|
|
|
responses.create(maxSample, 1, CV_32FC1);
|
|
|
|
|
|
|
|
CvBoostParams _params;
|
|
|
|
{
|
|
|
|
// tree params
|
|
|
|
_params.max_categories = 10;
|
|
|
|
_params.max_depth = 2;
|
|
|
|
_params.cv_folds = 0;
|
|
|
|
_params.truncate_pruned_tree = false;
|
|
|
|
_params.use_surrogates = false;
|
|
|
|
_params.use_1se_rule = false;
|
|
|
|
_params.regression_accuracy = 1.0e-6;
|
|
|
|
|
|
|
|
// boost params
|
|
|
|
_params.boost_type = CvBoost::GENTLE;
|
|
|
|
_params.split_criteria = CvBoost::SQERR;
|
|
|
|
_params.weight_trim_rate = 0.95;
|
|
|
|
|
|
|
|
// simple defaults
|
|
|
|
_params.min_sample_count = 2;
|
|
|
|
_params.weak_count = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
params = _params;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Octave::~Octave(){}
|
|
|
|
|
|
|
|
bool cv::Octave::train( const cv::Mat& _trainData, const cv::Mat& _responses, const cv::Mat& varIdx,
|
|
|
|
const cv::Mat& sampleIdx, const cv::Mat& varType, const cv::Mat& missingDataMask)
|
|
|
|
{
|
|
|
|
bool update = false;
|
|
|
|
return cv::Boost::train(_trainData, CV_COL_SAMPLE, _responses, varIdx, sampleIdx, varType, missingDataMask, params,
|
|
|
|
update);
|
|
|
|
}
|
|
|
|
|
2013-01-09 21:07:24 +08:00
|
|
|
void cv::Octave::setRejectThresholds(cv::OutputArray _thresholds)
|
2013-01-09 20:03:53 +08:00
|
|
|
{
|
|
|
|
dprintf("set thresholds according to DBP strategy\n");
|
|
|
|
|
|
|
|
// labels desided by classifier
|
|
|
|
cv::Mat desisions(responses.cols, responses.rows, responses.type());
|
|
|
|
float* dptr = desisions.ptr<float>(0);
|
|
|
|
|
|
|
|
// mask of samples satisfying the condition
|
|
|
|
cv::Mat ppmask(responses.cols, responses.rows, CV_8UC1);
|
|
|
|
uchar* mptr = ppmask.ptr<uchar>(0);
|
|
|
|
|
|
|
|
int nsamples = npositives + nnegatives;
|
|
|
|
|
|
|
|
cv::Mat stab;
|
|
|
|
|
|
|
|
for (int si = 0; si < nsamples; ++si)
|
|
|
|
{
|
|
|
|
float decision = dptr[si] = predict(trainData.col(si), stab, false, false);
|
|
|
|
mptr[si] = cv::saturate_cast<uchar>((uint)( (responses.ptr<float>(si)[0] == 1.f) && (decision == 1.f)));
|
|
|
|
}
|
|
|
|
|
|
|
|
int weaks = weak->total;
|
2013-01-09 21:07:24 +08:00
|
|
|
_thresholds.create(1, weaks, CV_64FC1);
|
|
|
|
cv::Mat& thresholds = _thresholds.getMatRef();
|
2013-01-09 20:03:53 +08:00
|
|
|
double* thptr = thresholds.ptr<double>(0);
|
|
|
|
|
|
|
|
cv::Mat traces(weaks, nsamples, CV_64FC1, cv::Scalar::all(FLT_MAX));
|
|
|
|
|
|
|
|
for (int w = 0; w < weaks; ++w)
|
|
|
|
{
|
|
|
|
double* rptr = traces.ptr<double>(w);
|
|
|
|
for (int si = 0; si < nsamples; ++si)
|
|
|
|
{
|
|
|
|
cv::Range curr(0, w + 1);
|
|
|
|
if (mptr[si])
|
|
|
|
{
|
|
|
|
float trace = predict(trainData.col(si), curr);
|
|
|
|
rptr[si] = trace;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
double mintrace = 0.;
|
|
|
|
cv::minMaxLoc(traces.row(w), &mintrace);
|
|
|
|
thptr[w] = mintrace;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::Octave::processPositives(const Dataset* dataset, const FeaturePool* pool)
|
|
|
|
{
|
|
|
|
int w = boundingBox.width;
|
|
|
|
int h = boundingBox.height;
|
|
|
|
|
|
|
|
integrals.create(pool->size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
|
|
|
|
|
|
|
int total = 0;
|
|
|
|
for (int curr = 0; curr < dataset->available( Dataset::POSITIVE); ++curr)
|
|
|
|
{
|
|
|
|
cv::Mat sample = dataset->get( Dataset::POSITIVE, curr);
|
|
|
|
|
|
|
|
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
|
|
|
sample = sample(boundingBox);
|
|
|
|
|
|
|
|
pool->preprocess(sample, channels);
|
|
|
|
responses.ptr<float>(total)[0] = 1.f;
|
|
|
|
|
|
|
|
if (++total >= npositives) break;
|
|
|
|
}
|
|
|
|
|
|
|
|
dprintf("Processing positives finished:\n\trequested %d positives, collected %d samples.\n", npositives, total);
|
|
|
|
|
|
|
|
npositives = total;
|
|
|
|
nnegatives = cvRound(nnegatives * total / (double)npositives);
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::Octave::generateNegatives(const Dataset* dataset, const FeaturePool* pool)
|
|
|
|
{
|
|
|
|
// ToDo: set seed, use offsets
|
|
|
|
sft::Random::engine eng(65633343L);
|
|
|
|
sft::Random::engine idxEng(764224349868L);
|
|
|
|
|
|
|
|
int h = boundingBox.height;
|
|
|
|
|
|
|
|
int nimages = dataset->available(Dataset::NEGATIVE);
|
|
|
|
sft::Random::uniform iRand(0, nimages - 1);
|
|
|
|
|
|
|
|
int total = 0;
|
|
|
|
Mat sum;
|
|
|
|
for (int i = npositives; i < nnegatives + npositives; ++total)
|
|
|
|
{
|
|
|
|
int curr = iRand(idxEng);
|
|
|
|
|
|
|
|
Mat frame = dataset->get(Dataset::NEGATIVE, curr);
|
|
|
|
|
|
|
|
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
|
|
|
|
int maxH = frame.rows - 2 * boundingBox.y - boundingBox.height;
|
|
|
|
|
|
|
|
sft::Random::uniform wRand(0, maxW -1);
|
|
|
|
sft::Random::uniform hRand(0, maxH -1);
|
|
|
|
|
|
|
|
int dx = wRand(eng);
|
|
|
|
int dy = hRand(eng);
|
|
|
|
|
|
|
|
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
|
|
|
|
|
|
|
|
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
|
|
|
|
pool->preprocess(frame, channels);
|
|
|
|
|
|
|
|
dprintf("generated %d %d\n", dx, dy);
|
|
|
|
// // if (predict(sum))
|
|
|
|
{
|
|
|
|
responses.ptr<float>(i)[0] = 0.f;
|
|
|
|
++i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
dprintf("Processing negatives finished:\n\trequested %d negatives, viewed %d samples.\n", nnegatives, total);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T> int sgn(T val) {
|
|
|
|
return (T(0) < val) - (val < T(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::Octave::traverse(const CvBoostTree* tree, cv::FileStorage& fs, int& nfeatures, int* used, const double* th) const
|
|
|
|
{
|
|
|
|
std::queue<const CvDTreeNode*> nodes;
|
|
|
|
nodes.push( tree->get_root());
|
|
|
|
const CvDTreeNode* tempNode;
|
|
|
|
int leafValIdx = 0;
|
|
|
|
int internalNodeIdx = 1;
|
|
|
|
float* leafs = new float[(int)pow(2.f, get_params().max_depth)];
|
|
|
|
|
|
|
|
fs << "{";
|
|
|
|
fs << "treeThreshold" << *th;
|
|
|
|
fs << "internalNodes" << "[";
|
|
|
|
while (!nodes.empty())
|
|
|
|
{
|
|
|
|
tempNode = nodes.front();
|
|
|
|
CV_Assert( tempNode->left );
|
|
|
|
if ( !tempNode->left->left && !tempNode->left->right)
|
|
|
|
{
|
|
|
|
leafs[-leafValIdx] = (float)tempNode->left->value;
|
|
|
|
fs << leafValIdx-- ;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
nodes.push( tempNode->left );
|
|
|
|
fs << internalNodeIdx++;
|
|
|
|
}
|
|
|
|
CV_Assert( tempNode->right );
|
|
|
|
if ( !tempNode->right->left && !tempNode->right->right)
|
|
|
|
{
|
|
|
|
leafs[-leafValIdx] = (float)tempNode->right->value;
|
|
|
|
fs << leafValIdx--;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
nodes.push( tempNode->right );
|
|
|
|
fs << internalNodeIdx++;
|
|
|
|
}
|
|
|
|
|
|
|
|
int fidx = tempNode->split->var_idx;
|
|
|
|
fs << nfeatures;
|
|
|
|
used[nfeatures++] = fidx;
|
|
|
|
|
|
|
|
fs << tempNode->split->ord.c;
|
|
|
|
|
|
|
|
nodes.pop();
|
|
|
|
}
|
|
|
|
fs << "]";
|
|
|
|
|
|
|
|
fs << "leafValues" << "[";
|
|
|
|
for (int ni = 0; ni < -leafValIdx; ni++)
|
|
|
|
fs << leafs[ni];
|
|
|
|
fs << "]";
|
|
|
|
|
|
|
|
|
|
|
|
fs << "}";
|
|
|
|
}
|
|
|
|
|
2013-01-09 21:07:24 +08:00
|
|
|
void cv::Octave::write( cv::FileStorage &fso, const FeaturePool* pool, InputArray _thresholds) const
|
2013-01-09 20:03:53 +08:00
|
|
|
{
|
2013-01-09 21:07:24 +08:00
|
|
|
CV_Assert(!_thresholds.empty());
|
2013-01-09 20:03:53 +08:00
|
|
|
cv::Mat used( 1, weak->total * (pow(2, params.max_depth) - 1), CV_32SC1);
|
|
|
|
int* usedPtr = used.ptr<int>(0);
|
|
|
|
int nfeatures = 0;
|
2013-01-09 21:07:24 +08:00
|
|
|
cv::Mat thresholds = _thresholds.getMat();
|
2013-01-09 20:03:53 +08:00
|
|
|
fso << "{"
|
|
|
|
<< "scale" << logScale
|
|
|
|
<< "weaks" << weak->total
|
|
|
|
<< "trees" << "[";
|
|
|
|
// should be replased with the H.L. one
|
|
|
|
CvSeqReader reader;
|
|
|
|
cvStartReadSeq( weak, &reader);
|
|
|
|
|
|
|
|
for(int i = 0; i < weak->total; i++ )
|
|
|
|
{
|
|
|
|
CvBoostTree* tree;
|
|
|
|
CV_READ_SEQ_ELEM( tree, reader );
|
|
|
|
|
|
|
|
traverse(tree, fso, nfeatures, usedPtr, thresholds.ptr<double>(0) + i);
|
|
|
|
}
|
|
|
|
fso << "]";
|
|
|
|
// features
|
|
|
|
|
|
|
|
fso << "features" << "[";
|
|
|
|
for (int i = 0; i < nfeatures; ++i)
|
|
|
|
pool->write(fso, usedPtr[i]);
|
|
|
|
fso << "]"
|
|
|
|
<< "}";
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::Octave::initial_weights(double (&p)[2])
|
|
|
|
{
|
|
|
|
double n = data->sample_count;
|
|
|
|
p[0] = n / (2. * (double)(nnegatives));
|
|
|
|
p[1] = n / (2. * (double)(npositives));
|
|
|
|
}
|
|
|
|
|
|
|
|
bool cv::Octave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
|
|
|
|
{
|
|
|
|
CV_Assert(treeDepth == 2);
|
|
|
|
CV_Assert(weaks > 0);
|
|
|
|
|
|
|
|
params.max_depth = treeDepth;
|
|
|
|
params.weak_count = weaks;
|
|
|
|
|
|
|
|
// 1. fill integrals and classes
|
|
|
|
processPositives(dataset, pool);
|
|
|
|
generateNegatives(dataset, pool);
|
|
|
|
|
|
|
|
// 2. only sumple case (all features used)
|
|
|
|
int nfeatures = pool->size();
|
|
|
|
cv::Mat varIdx(1, nfeatures, CV_32SC1);
|
|
|
|
int* ptr = varIdx.ptr<int>(0);
|
|
|
|
|
|
|
|
for (int x = 0; x < nfeatures; ++x)
|
|
|
|
ptr[x] = x;
|
|
|
|
|
|
|
|
// 3. only sumple case (all samples used)
|
|
|
|
int nsamples = npositives + nnegatives;
|
|
|
|
cv::Mat sampleIdx(1, nsamples, CV_32SC1);
|
|
|
|
ptr = sampleIdx.ptr<int>(0);
|
|
|
|
|
|
|
|
for (int x = 0; x < nsamples; ++x)
|
|
|
|
ptr[x] = x;
|
|
|
|
|
|
|
|
// 4. ICF has an orderable responce.
|
|
|
|
cv::Mat varType(1, nfeatures + 1, CV_8UC1);
|
|
|
|
uchar* uptr = varType.ptr<uchar>(0);
|
|
|
|
for (int x = 0; x < nfeatures; ++x)
|
|
|
|
uptr[x] = CV_VAR_ORDERED;
|
|
|
|
uptr[nfeatures] = CV_VAR_CATEGORICAL;
|
|
|
|
|
|
|
|
trainData.create(nfeatures, nsamples, CV_32FC1);
|
|
|
|
for (int fi = 0; fi < nfeatures; ++fi)
|
|
|
|
{
|
|
|
|
float* dptr = trainData.ptr<float>(fi);
|
|
|
|
for (int si = 0; si < nsamples; ++si)
|
|
|
|
{
|
|
|
|
dptr[si] = pool->apply(fi, si, integrals);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat missingMask;
|
|
|
|
|
|
|
|
bool ok = train(trainData, responses, varIdx, sampleIdx, varType, missingMask);
|
|
|
|
if (!ok)
|
2013-01-09 20:10:05 +08:00
|
|
|
CV_Error(CV_StsInternal, "ERROR: tree can not be trained");
|
2013-01-09 20:03:53 +08:00
|
|
|
return ok;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2013-01-09 21:07:24 +08:00
|
|
|
float cv::Octave::predict( cv::InputArray _sample, cv::InputArray _votes, bool raw_mode, bool return_sum ) const
|
2013-01-09 20:03:53 +08:00
|
|
|
{
|
2013-01-09 21:07:24 +08:00
|
|
|
cv::Mat sample = _sample.getMat();
|
|
|
|
CvMat csample = sample;
|
|
|
|
if (_votes.empty())
|
|
|
|
return CvBoost::predict(&csample, 0, 0, CV_WHOLE_SEQ, raw_mode, return_sum);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::Mat votes = _votes.getMat();
|
|
|
|
CvMat cvotes = votes;
|
|
|
|
return CvBoost::predict(&csample, 0, &cvotes, CV_WHOLE_SEQ, raw_mode, return_sum);
|
|
|
|
}
|
2013-01-09 20:03:53 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
float cv::Octave::predict( const Mat& _sample, const cv::Range range) const
|
|
|
|
{
|
|
|
|
CvMat sample = _sample;
|
|
|
|
return CvBoost::predict(&sample, 0, 0, range, false, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::Octave::write( CvFileStorage* fs, string name) const
|
|
|
|
{
|
|
|
|
CvBoost::write(fs, name.c_str());
|
|
|
|
}
|