The first draft of simplex algorithm, simple tests.
What we have now corresponds to "formal simplex algorithm", described in
Cormen's "Intro to Algorithms". It will work *only* if the initial
problem has (0,0,0,...,0) as feasible solution (consequently, it will
work unpredictably if problem was unfeasible or did not have zero-vector as
feasible solution). Moreover, it might cycle.
TODO (first priority)
1. Implement initialize_simplex() procedure, that shall check for
feasibility and generate initial feasible solution. (in particular, code
should pass all 4 tests implemented at the moment)
2. Implement Bland's rule to avoid cycling.
3. Make the code more clear.
4. Implement several non-trivial tests (??) and check algorithm against
them. Debug if necessary.
TODO (second priority)
1. Concentrate on stability and speed (make difficult tests)
2013-06-28 20:28:57 +08:00
|
|
|
#include "opencv2/ts.hpp"
|
2013-06-20 19:54:09 +08:00
|
|
|
#include "precomp.hpp"
|
The first draft of simplex algorithm, simple tests.
What we have now corresponds to "formal simplex algorithm", described in
Cormen's "Intro to Algorithms". It will work *only* if the initial
problem has (0,0,0,...,0) as feasible solution (consequently, it will
work unpredictably if problem was unfeasible or did not have zero-vector as
feasible solution). Moreover, it might cycle.
TODO (first priority)
1. Implement initialize_simplex() procedure, that shall check for
feasibility and generate initial feasible solution. (in particular, code
should pass all 4 tests implemented at the moment)
2. Implement Bland's rule to avoid cycling.
3. Make the code more clear.
4. Implement several non-trivial tests (??) and check algorithm against
them. Debug if necessary.
TODO (second priority)
1. Concentrate on stability and speed (make difficult tests)
2013-06-28 20:28:57 +08:00
|
|
|
#include <climits>
|
|
|
|
#include <algorithm>
|
2013-06-25 01:27:11 +08:00
|
|
|
|
|
|
|
namespace cv{namespace optim{
|
The first draft of simplex algorithm, simple tests.
What we have now corresponds to "formal simplex algorithm", described in
Cormen's "Intro to Algorithms". It will work *only* if the initial
problem has (0,0,0,...,0) as feasible solution (consequently, it will
work unpredictably if problem was unfeasible or did not have zero-vector as
feasible solution). Moreover, it might cycle.
TODO (first priority)
1. Implement initialize_simplex() procedure, that shall check for
feasibility and generate initial feasible solution. (in particular, code
should pass all 4 tests implemented at the moment)
2. Implement Bland's rule to avoid cycling.
3. Make the code more clear.
4. Implement several non-trivial tests (??) and check algorithm against
them. Debug if necessary.
TODO (second priority)
1. Concentrate on stability and speed (make difficult tests)
2013-06-28 20:28:57 +08:00
|
|
|
using std::vector;
|
2013-06-25 01:27:11 +08:00
|
|
|
|
|
|
|
double LPSolver::solve(const Function& F,const Constraints& C, OutputArray result)const{
|
|
|
|
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
double LPSolver::LPFunction::calc(InputArray args)const{
|
|
|
|
printf("call to LPFunction::calc()\n");
|
|
|
|
return 0.0;
|
|
|
|
}
|
The first draft of simplex algorithm, simple tests.
What we have now corresponds to "formal simplex algorithm", described in
Cormen's "Intro to Algorithms". It will work *only* if the initial
problem has (0,0,0,...,0) as feasible solution (consequently, it will
work unpredictably if problem was unfeasible or did not have zero-vector as
feasible solution). Moreover, it might cycle.
TODO (first priority)
1. Implement initialize_simplex() procedure, that shall check for
feasibility and generate initial feasible solution. (in particular, code
should pass all 4 tests implemented at the moment)
2. Implement Bland's rule to avoid cycling.
3. Make the code more clear.
4. Implement several non-trivial tests (??) and check algorithm against
them. Debug if necessary.
TODO (second priority)
1. Concentrate on stability and speed (make difficult tests)
2013-06-28 20:28:57 +08:00
|
|
|
void print_matrix(const Mat& X){
|
|
|
|
printf("\ttype:%d vs %d,\tsize: %d-on-%d\n",X.type(),CV_64FC1,X.rows,X.cols);
|
|
|
|
for(int i=0;i<X.rows;i++){
|
|
|
|
printf("\t[");
|
|
|
|
for(int j=0;j<X.cols;j++){
|
|
|
|
printf("%g, ",X.at<double>(i,j));
|
|
|
|
}
|
|
|
|
printf("]\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
namespace solveLP_aux{
|
|
|
|
//return -1 if problem is unfeasible, 0 if feasible
|
|
|
|
//in latter case it returns feasible solution in z with homogenised b's and v
|
|
|
|
int initialize_simplex(const Mat& c, Mat& b, Mat& z,double& v);
|
|
|
|
}
|
|
|
|
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
|
|
|
|
printf("call to solveLP\n");//-3(incorrect),-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
|
|
|
|
|
|
|
|
//sanity check (size, type, no. of channels) (and throw exception, if appropriate)
|
|
|
|
if(Func.type()!=CV_64FC1 || Constr.type()!=CV_64FC1){
|
|
|
|
printf("both Func and Constr should be one-channel matrices of double's\n");
|
|
|
|
return -3;
|
|
|
|
}
|
|
|
|
if(Func.rows!=1){
|
|
|
|
printf("Func should be row-vector\n");
|
|
|
|
return -3;
|
|
|
|
}
|
|
|
|
vector<int> N(Func.cols);
|
|
|
|
N[0]=1;
|
|
|
|
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
|
|
|
|
*it=it[-1]+1;
|
|
|
|
}
|
|
|
|
if((Constr.cols-1)!=Func.cols){
|
|
|
|
printf("Constr should have one more column when compared to Func\n");
|
|
|
|
return -3;
|
|
|
|
}
|
|
|
|
vector<int> B(Constr.rows);
|
|
|
|
B[0]=Func.cols+1;
|
|
|
|
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){
|
|
|
|
*it=it[-1]+1;
|
|
|
|
}
|
|
|
|
|
|
|
|
//copy arguments for we will shall modify them
|
|
|
|
Mat c=Func.clone(),
|
|
|
|
b=Constr.clone();
|
|
|
|
double v=0;
|
|
|
|
|
|
|
|
solveLP_aux::initialize_simplex(c,b,z,v);
|
|
|
|
|
|
|
|
int count=0;
|
|
|
|
while(1){
|
|
|
|
printf("iteration #%d\n",count++);
|
|
|
|
|
|
|
|
MatIterator_<double> pos_ptr;
|
|
|
|
int e=0;
|
|
|
|
for(pos_ptr=c.begin<double>();(*pos_ptr<=0) && pos_ptr!=c.end<double>();pos_ptr++,e++);
|
|
|
|
if(pos_ptr==c.end<double>()){
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
printf("offset of first nonneg coef is %d\n",e);//TODO: choose the var with the smallest index
|
|
|
|
|
|
|
|
int l=-1;
|
|
|
|
double min=DBL_MAX;
|
|
|
|
int row_it=0;
|
|
|
|
double ite=0;
|
|
|
|
MatIterator_<double> min_row_ptr=b.begin<double>();
|
|
|
|
for(MatIterator_<double> it=b.begin<double>();it!=b.end<double>();it+=b.cols,row_it++){
|
|
|
|
double myite=0;
|
|
|
|
//check constraints, select the tightest one, TODO: smallest index
|
|
|
|
if((myite=it[e])>0){
|
|
|
|
double val=it[b.cols-1]/myite;
|
|
|
|
if(val<min){
|
|
|
|
min_row_ptr=it;
|
|
|
|
ite=myite;
|
|
|
|
min=val;
|
|
|
|
l=row_it;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(l==-1){
|
|
|
|
//unbounded
|
|
|
|
return -2;
|
|
|
|
}
|
|
|
|
printf("the tightest constraint is in row %d with %g\n",l,min);
|
|
|
|
|
|
|
|
//pivoting:
|
|
|
|
{
|
|
|
|
int col_count=0;
|
|
|
|
for(MatIterator_<double> it=min_row_ptr;col_count<b.cols;col_count++,it++){
|
|
|
|
if(col_count==e){
|
|
|
|
*it=1/ite;
|
|
|
|
}else{
|
|
|
|
*it/=ite;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int row_count=0;
|
|
|
|
for(MatIterator_<double> it=b.begin<double>();row_count<b.rows;row_count++){
|
|
|
|
printf("offset: %d\n",it-b.begin<double>());
|
|
|
|
if(row_count==l){
|
|
|
|
it+=b.cols;
|
|
|
|
}else{
|
|
|
|
//remaining constraints
|
|
|
|
double coef=it[e];
|
|
|
|
MatIterator_<double> shadow_it=min_row_ptr;
|
|
|
|
for(int col_it=0;col_it<(b.cols);col_it++,it++,shadow_it++){
|
|
|
|
if(col_it==e){
|
|
|
|
*it=-coef*(*shadow_it);
|
|
|
|
}else{
|
|
|
|
*it-=coef*(*shadow_it);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//objective function
|
|
|
|
double coef=*pos_ptr;
|
|
|
|
MatIterator_<double> shadow_it=min_row_ptr;
|
|
|
|
MatIterator_<double> it=c.begin<double>();
|
|
|
|
for(int col_it=0;col_it<(b.cols-1);col_it++,it++,shadow_it++){
|
|
|
|
if(col_it==e){
|
|
|
|
*it=-coef*(*shadow_it);
|
|
|
|
}else{
|
|
|
|
*it-=coef*(*shadow_it);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
v+=coef*(*shadow_it);
|
|
|
|
|
|
|
|
//new basis and nonbasic sets
|
|
|
|
int tmp=N[e];
|
|
|
|
N[e]=B[l];
|
|
|
|
B[l]=tmp;
|
|
|
|
|
|
|
|
printf("objective, v=%g\n",v);
|
|
|
|
print_matrix(c);
|
|
|
|
printf("constraints\n");
|
|
|
|
print_matrix(b);
|
|
|
|
printf("non-basic: ");
|
|
|
|
for (std::vector<int>::iterator it = N.begin() ; it != N.end(); ++it){
|
|
|
|
printf("%d, ",*it);
|
|
|
|
}
|
|
|
|
printf("\nbasic: ");
|
|
|
|
for (std::vector<int>::iterator it = B.begin() ; it != B.end(); ++it){
|
|
|
|
printf("%d, ",*it);
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
//return the optimal solution
|
|
|
|
//z=cv::Mat_<double>(1,c.cols,0);
|
|
|
|
MatIterator_<double> it=z.begin<double>();
|
|
|
|
for(int i=1;i<=c.cols;i++,it++){
|
|
|
|
std::vector<int>::iterator pos=B.begin();
|
|
|
|
if((pos=std::find(B.begin(),B.end(),i))==B.end()){
|
|
|
|
*it+=0;
|
|
|
|
}else{
|
|
|
|
*it+=b.at<double>(pos-B.begin(),b.cols-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
int solveLP_aux::initialize_simplex(const Mat& c, Mat& b, Mat& z,double& v){//TODO
|
|
|
|
z=Mat_<double>(1,c.cols,0.0);
|
|
|
|
v=0;
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cv::Mat mod_b=(cv::Mat_<double>(1,b.rows));
|
|
|
|
bool gen_new_sol_flag=false,hom_sol_given=false;
|
|
|
|
if(z.type()!=CV_64FC1 || z.rows!=1 || z.cols!=c.cols || (hom_sol_given=(countNonZero(z)==0))){
|
|
|
|
printf("line %d\n",__LINE__);
|
|
|
|
if(hom_sol_given==false){
|
|
|
|
printf("line %d, %d\n",__LINE__,hom_sol_given);
|
|
|
|
z=cv::Mat_<double>(1,c.cols,(double)0);
|
|
|
|
}
|
|
|
|
//check homogeneous solution
|
|
|
|
printf("line %d\n",__LINE__);
|
|
|
|
for(MatIterator_<double> b_it=b.begin<double>()+b.cols-1,mod_b_it=mod_b.begin<double>();mod_b_it!=mod_b.end<double>();
|
|
|
|
b_it+=b.cols,mod_b_it++){
|
|
|
|
if(*b_it<0){
|
|
|
|
//if no - we need feasible solution
|
|
|
|
gen_new_sol_flag=true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printf("line %d, gen_new_sol_flag=%d - I've got here!!!\n",__LINE__,gen_new_sol_flag);
|
|
|
|
//if yes - we have feasible solution!
|
|
|
|
}else{
|
|
|
|
//check for feasibility
|
|
|
|
MatIterator_<double> it=b.begin<double>();
|
|
|
|
for(MatIterator_<double> mod_b_it=mod_b.begin<double>();it!=b.end<double>();mod_b_it++){
|
|
|
|
double sum=0;
|
|
|
|
for(MatIterator_<double> z_it=z.begin<double>();z_it!=z.end<double>();z_it++,it++){
|
|
|
|
sum+=(*it)*(*z_it);
|
|
|
|
}
|
|
|
|
if((*mod_b_it=(*it-sum))<0){
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
it++;
|
|
|
|
}
|
|
|
|
if(it==b.end<double>()){
|
|
|
|
//z contains feasible solution - just homogenise b's TODO: and v
|
|
|
|
gen_new_sol_flag=false;
|
|
|
|
for(MatIterator_<double> b_it=b.begin<double>()+b.cols-1,mod_b_it=mod_b.begin<double>();mod_b_it!=mod_b.end<double>();
|
|
|
|
b_it+=b.cols,mod_b_it++){
|
|
|
|
*b_it=*mod_b_it;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
//if no - we need feasible solution
|
|
|
|
gen_new_sol_flag=true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(gen_new_sol_flag==true){
|
|
|
|
//we should generate new solution - TODO
|
|
|
|
printf("we should generate new solution\n");
|
|
|
|
Mat new_c=Mat_<double>(1,c.cols+1,0.0),
|
|
|
|
new_b=Mat_<double>(b.rows,b.cols+1,-1.0),
|
|
|
|
new_z=Mat_<double>(1,c.cols+1,0.0);
|
|
|
|
|
|
|
|
new_c.end<double>()[-1]=-1;
|
|
|
|
c.copyTo(new_c.colRange(0,new_c.cols-1));
|
|
|
|
|
|
|
|
b.col(b.cols-1).copyTo(new_b.col(new_b.cols-1));
|
|
|
|
b.colRange(0,b.cols-1).copyTo(new_b.colRange(0,new_b.cols-2));
|
|
|
|
|
|
|
|
Mat b_slice=b.col(b.cols-1);
|
|
|
|
new_z.end<double>()[-1]=-*(std::min_element(b_slice.begin<double>(),b_slice.end<double>()));
|
|
|
|
|
|
|
|
/*printf("matrix new_c\n");
|
|
|
|
print_matrix(new_c);
|
|
|
|
printf("matrix new_b\n");
|
|
|
|
print_matrix(new_b);
|
|
|
|
printf("matrix new_z\n");
|
|
|
|
print_matrix(new_z);*/
|
|
|
|
|
|
|
|
printf("run for the second time!\n");
|
|
|
|
solveLP(new_c,new_b,new_z);
|
|
|
|
printf("original z was\n");
|
|
|
|
print_matrix(z);
|
|
|
|
printf("that's what I've got\n");
|
|
|
|
print_matrix(new_z);
|
|
|
|
printf("for the constraints\n");
|
|
|
|
print_matrix(b);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
2013-06-25 01:27:11 +08:00
|
|
|
|
|
|
|
}}
|