opencv/modules/cudaoptflow/perf/perf_optflow.cpp

456 lines
14 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace std;
using namespace testing;
using namespace perf;
//////////////////////////////////////////////////////
// InterpolateFrames
typedef pair<string, string> pair_string;
DEF_PARAM_TEST_1(ImagePair, pair_string);
PERF_TEST_P(ImagePair, InterpolateFrames,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0);
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0);
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat d_fu, d_fv;
cv::cuda::GpuMat d_bu, d_bv;
2013-08-28 19:45:13 +08:00
cv::cuda::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
d_flow(d_frame0, d_frame1, d_fu, d_fv);
d_flow(d_frame1, d_frame0, d_bu, d_bv);
2013-08-28 19:45:13 +08:00
cv::cuda::GpuMat newFrame;
cv::cuda::GpuMat d_buf;
2013-08-28 19:45:13 +08:00
TEST_CYCLE() cv::cuda::interpolateFrames(d_frame0, d_frame1, d_fu, d_fv, d_bu, d_bv, 0.5f, newFrame, d_buf);
2013-07-24 17:55:18 +08:00
CUDA_SANITY_CHECK(newFrame, 1e-4);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////
// CreateOpticalFlowNeedleMap
PERF_TEST_P(ImagePair, CreateOpticalFlowNeedleMap,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0);
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0);
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat u;
cv::cuda::GpuMat v;
2013-08-28 19:45:13 +08:00
cv::cuda::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
d_flow(d_frame0, d_frame1, u, v);
2013-08-28 19:45:13 +08:00
cv::cuda::GpuMat vertex, colors;
2013-08-28 19:45:13 +08:00
TEST_CYCLE() cv::cuda::createOpticalFlowNeedleMap(u, v, vertex, colors);
2013-07-24 17:55:18 +08:00
CUDA_SANITY_CHECK(vertex, 1e-6);
CUDA_SANITY_CHECK(colors);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////
// BroxOpticalFlow
PERF_TEST_P(ImagePair, BroxOpticalFlow,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
declare.time(300);
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
frame0.convertTo(frame0, CV_32FC1, 1.0 / 255.0);
frame1.convertTo(frame1, CV_32FC1, 1.0 / 255.0);
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat u;
cv::cuda::GpuMat v;
2013-08-28 19:45:13 +08:00
cv::cuda::BroxOpticalFlow d_flow(0.197f /*alpha*/, 50.0f /*gamma*/, 0.8f /*scale_factor*/,
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
TEST_CYCLE() d_flow(d_frame0, d_frame1, u, v);
2013-07-24 17:55:18 +08:00
CUDA_SANITY_CHECK(u, 1e-1);
CUDA_SANITY_CHECK(v, 1e-1);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////
// PyrLKOpticalFlowSparse
DEF_PARAM_TEST(ImagePair_Gray_NPts_WinSz_Levels_Iters, pair_string, bool, int, int, int, int);
PERF_TEST_P(ImagePair_Gray_NPts_WinSz_Levels_Iters, PyrLKOpticalFlowSparse,
Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")),
Bool(),
Values(8000),
Values(21),
Values(1, 3),
Values(1, 30)))
{
declare.time(20.0);
const pair_string imagePair = GET_PARAM(0);
const bool useGray = GET_PARAM(1);
const int points = GET_PARAM(2);
const int winSize = GET_PARAM(3);
const int levels = GET_PARAM(4);
const int iters = GET_PARAM(5);
const cv::Mat frame0 = readImage(imagePair.first, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
const cv::Mat frame1 = readImage(imagePair.second, useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
if (useGray)
gray_frame = frame0;
else
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
cv::Mat pts;
cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0);
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_pts(pts.reshape(2, 1));
2013-08-28 19:45:13 +08:00
cv::cuda::PyrLKOpticalFlow d_pyrLK;
d_pyrLK.winSize = cv::Size(winSize, winSize);
d_pyrLK.maxLevel = levels - 1;
d_pyrLK.iters = iters;
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat nextPts;
cv::cuda::GpuMat status;
TEST_CYCLE() d_pyrLK.sparse(d_frame0, d_frame1, d_pts, nextPts, status);
2013-07-24 17:55:18 +08:00
CUDA_SANITY_CHECK(nextPts);
CUDA_SANITY_CHECK(status);
}
else
{
cv::Mat nextPts;
cv::Mat status;
TEST_CYCLE()
{
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(),
cv::Size(winSize, winSize), levels - 1,
cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01));
}
CPU_SANITY_CHECK(nextPts);
CPU_SANITY_CHECK(status);
}
}
//////////////////////////////////////////////////////
// PyrLKOpticalFlowDense
DEF_PARAM_TEST(ImagePair_WinSz_Levels_Iters, pair_string, int, int, int);
PERF_TEST_P(ImagePair_WinSz_Levels_Iters, PyrLKOpticalFlowDense,
Combine(Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")),
Values(3, 5, 7, 9, 13, 17, 21),
Values(1, 3),
Values(1, 10)))
{
declare.time(30);
const pair_string imagePair = GET_PARAM(0);
const int winSize = GET_PARAM(1);
const int levels = GET_PARAM(2);
const int iters = GET_PARAM(3);
const cv::Mat frame0 = readImage(imagePair.first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
const cv::Mat frame1 = readImage(imagePair.second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat u;
cv::cuda::GpuMat v;
2013-08-28 19:45:13 +08:00
cv::cuda::PyrLKOpticalFlow d_pyrLK;
d_pyrLK.winSize = cv::Size(winSize, winSize);
d_pyrLK.maxLevel = levels - 1;
d_pyrLK.iters = iters;
TEST_CYCLE() d_pyrLK.dense(d_frame0, d_frame1, u, v);
2013-07-24 17:55:18 +08:00
CUDA_SANITY_CHECK(u);
CUDA_SANITY_CHECK(v);
}
else
{
FAIL_NO_CPU();
}
}
//////////////////////////////////////////////////////
// FarnebackOpticalFlow
PERF_TEST_P(ImagePair, FarnebackOpticalFlow,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
declare.time(10);
const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
const int numLevels = 5;
const double pyrScale = 0.5;
const int winSize = 13;
const int numIters = 10;
const int polyN = 5;
const double polySigma = 1.1;
const int flags = 0;
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat u;
cv::cuda::GpuMat v;
2013-08-28 19:45:13 +08:00
cv::cuda::FarnebackOpticalFlow d_farneback;
d_farneback.numLevels = numLevels;
d_farneback.pyrScale = pyrScale;
d_farneback.winSize = winSize;
d_farneback.numIters = numIters;
d_farneback.polyN = polyN;
d_farneback.polySigma = polySigma;
d_farneback.flags = flags;
TEST_CYCLE() d_farneback(d_frame0, d_frame1, u, v);
2013-07-24 17:55:18 +08:00
CUDA_SANITY_CHECK(u, 1e-4);
CUDA_SANITY_CHECK(v, 1e-4);
}
else
{
cv::Mat flow;
TEST_CYCLE() cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags);
CPU_SANITY_CHECK(flow);
}
}
//////////////////////////////////////////////////////
// OpticalFlowDual_TVL1
PERF_TEST_P(ImagePair, OpticalFlowDual_TVL1,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
declare.time(20);
const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat u;
cv::cuda::GpuMat v;
2013-07-24 17:55:18 +08:00
cv::cuda::OpticalFlowDual_TVL1_CUDA d_alg;
TEST_CYCLE() d_alg(d_frame0, d_frame1, u, v);
CUDA_SANITY_CHECK(u, 1e-1);
CUDA_SANITY_CHECK(v, 1e-1);
}
else
{
cv::Mat flow;
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
alg->set("medianFiltering", 1);
alg->set("innerIterations", 1);
alg->set("outerIterations", 300);
TEST_CYCLE() alg->calc(frame0, frame1, flow);
CPU_SANITY_CHECK(flow);
}
}
//////////////////////////////////////////////////////
// OpticalFlowBM
PERF_TEST_P(ImagePair, OpticalFlowBM,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
declare.time(400);
const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
const cv::Size block_size(16, 16);
const cv::Size shift_size(1, 1);
const cv::Size max_range(16, 16);
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat u, v, buf;
2013-08-28 19:45:13 +08:00
TEST_CYCLE() cv::cuda::calcOpticalFlowBM(d_frame0, d_frame1, block_size, shift_size, max_range, false, u, v, buf);
2013-07-24 17:55:18 +08:00
CUDA_SANITY_CHECK(u);
CUDA_SANITY_CHECK(v);
}
else
{
FAIL_NO_CPU();
}
}
PERF_TEST_P(ImagePair, DISABLED_FastOpticalFlowBM,
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
{
declare.time(400);
const cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
const cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
const cv::Size block_size(16, 16);
const cv::Size shift_size(1, 1);
const cv::Size max_range(16, 16);
2013-07-24 17:55:18 +08:00
if (PERF_RUN_CUDA())
{
2013-08-28 19:45:13 +08:00
const cv::cuda::GpuMat d_frame0(frame0);
const cv::cuda::GpuMat d_frame1(frame1);
cv::cuda::GpuMat u, v;
2013-08-28 19:45:13 +08:00
cv::cuda::FastOpticalFlowBM fastBM;
TEST_CYCLE() fastBM(d_frame0, d_frame1, u, v, max_range.width, block_size.width);
2013-07-24 17:55:18 +08:00
CUDA_SANITY_CHECK(u, 2);
CUDA_SANITY_CHECK(v, 2);
}
else
{
FAIL_NO_CPU();
}
}