opencv/modules/objdetect/test/test_boarddetection.cpp

322 lines
12 KiB
C++
Raw Normal View History

2022-12-28 22:28:59 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#include "test_aruco_utils.hpp"
namespace opencv_test { namespace {
enum class ArucoAlgParams
{
USE_DEFAULT = 0,
USE_ARUCO3 = 1
};
/**
* @brief Check pose estimation of aruco board
*/
class CV_ArucoBoardPose : public cvtest::BaseTest {
public:
CV_ArucoBoardPose(ArucoAlgParams arucoAlgParams)
{
aruco::DetectorParameters params;
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
params.minDistanceToBorder = 3;
if (arucoAlgParams == ArucoAlgParams::USE_ARUCO3) {
params.useAruco3Detection = true;
params.cornerRefinementMethod = aruco::CORNER_REFINE_SUBPIX;
params.minSideLengthCanonicalImg = 16;
params.errorCorrectionRate = 0.8;
}
detector = aruco::ArucoDetector(dictionary, params);
}
protected:
aruco::ArucoDetector detector;
void run(int);
};
void CV_ArucoBoardPose::run(int) {
int iter = 0;
Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
Size imgSize(500, 500);
cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650;
cameraMatrix.at< double >(0, 2) = imgSize.width / 2;
cameraMatrix.at< double >(1, 2) = imgSize.height / 2;
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
const int sizeX = 3, sizeY = 3;
aruco::DetectorParameters detectorParameters = detector.getDetectorParameters();
// for different perspectives
for(double distance = 0.2; distance <= 0.4; distance += 0.15) {
for(int yaw = -55; yaw <= 50; yaw += 25) {
for(int pitch = -55; pitch <= 50; pitch += 25) {
vector<int> tmpIds;
for(int i = 0; i < sizeX*sizeY; i++)
tmpIds.push_back((iter + int(i)) % 250);
aruco::GridBoard gridboard(Size(sizeX, sizeY), 0.02f, 0.005f, detector.getDictionary(), tmpIds);
int markerBorder = iter % 2 + 1;
iter++;
// create synthetic image
Mat img = projectBoard(gridboard, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance,
imgSize, markerBorder);
vector<vector<Point2f> > corners;
vector<int> ids;
detectorParameters.markerBorderBits = markerBorder;
detector.setDetectorParameters(detectorParameters);
detector.detectMarkers(img, corners, ids);
ASSERT_EQ(ids.size(), gridboard.getIds().size());
// estimate pose
Mat rvec, tvec;
{
Mat objPoints, imgPoints; // get object and image points for the solvePnP function
gridboard.matchImagePoints(corners, ids, objPoints, imgPoints);
solvePnP(objPoints, imgPoints, cameraMatrix, distCoeffs, rvec, tvec);
}
// check axes
vector<Point2f> axes = getAxis(cameraMatrix, distCoeffs, rvec, tvec, gridboard.getRightBottomCorner().x);
vector<Point2f> topLeft = getMarkerById(gridboard.getIds()[0], corners, ids);
ASSERT_NEAR(topLeft[0].x, axes[0].x, 2.f);
ASSERT_NEAR(topLeft[0].y, axes[0].y, 2.f);
vector<Point2f> topRight = getMarkerById(gridboard.getIds()[2], corners, ids);
ASSERT_NEAR(topRight[1].x, axes[1].x, 2.f);
ASSERT_NEAR(topRight[1].y, axes[1].y, 2.f);
vector<Point2f> bottomLeft = getMarkerById(gridboard.getIds()[6], corners, ids);
ASSERT_NEAR(bottomLeft[3].x, axes[2].x, 2.f);
ASSERT_NEAR(bottomLeft[3].y, axes[2].y, 2.f);
// check estimate result
for(unsigned int i = 0; i < ids.size(); i++) {
int foundIdx = -1;
for(unsigned int j = 0; j < gridboard.getIds().size(); j++) {
if(gridboard.getIds()[j] == ids[i]) {
foundIdx = int(j);
break;
}
}
if(foundIdx == -1) {
ts->printf(cvtest::TS::LOG, "Marker detected with wrong ID in Board test");
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
vector< Point2f > projectedCorners;
projectPoints(gridboard.getObjPoints()[foundIdx], rvec, tvec, cameraMatrix, distCoeffs,
projectedCorners);
for(int c = 0; c < 4; c++) {
double repError = cv::norm(projectedCorners[c] - corners[i][c]); // TODO cvtest
if(repError > 5.) {
ts->printf(cvtest::TS::LOG, "Corner reprojection error too high");
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
}
}
}
}
}
}
/**
* @brief Check refine strategy
*/
class CV_ArucoRefine : public cvtest::BaseTest {
public:
CV_ArucoRefine(ArucoAlgParams arucoAlgParams)
{
aruco::Dictionary dictionary = aruco::getPredefinedDictionary(aruco::DICT_6X6_250);
aruco::DetectorParameters params;
params.minDistanceToBorder = 3;
params.cornerRefinementMethod = aruco::CORNER_REFINE_SUBPIX;
if (arucoAlgParams == ArucoAlgParams::USE_ARUCO3)
params.useAruco3Detection = true;
aruco::RefineParameters refineParams(10.f, 3.f, true);
detector = aruco::ArucoDetector(dictionary, params, refineParams);
}
protected:
aruco::ArucoDetector detector;
void run(int);
};
void CV_ArucoRefine::run(int) {
int iter = 0;
Mat cameraMatrix = Mat::eye(3, 3, CV_64FC1);
Size imgSize(500, 500);
cameraMatrix.at< double >(0, 0) = cameraMatrix.at< double >(1, 1) = 650;
cameraMatrix.at< double >(0, 2) = imgSize.width / 2;
cameraMatrix.at< double >(1, 2) = imgSize.height / 2;
Mat distCoeffs(5, 1, CV_64FC1, Scalar::all(0));
aruco::DetectorParameters detectorParameters = detector.getDetectorParameters();
// for different perspectives
for(double distance = 0.2; distance <= 0.4; distance += 0.2) {
for(int yaw = -60; yaw < 60; yaw += 30) {
for(int pitch = -60; pitch <= 60; pitch += 30) {
aruco::GridBoard gridboard(Size(3, 3), 0.02f, 0.005f, detector.getDictionary());
int markerBorder = iter % 2 + 1;
iter++;
// create synthetic image
Mat img = projectBoard(gridboard, cameraMatrix, deg2rad(yaw), deg2rad(pitch), distance,
imgSize, markerBorder);
// detect markers
vector<vector<Point2f> > corners, rejected;
vector<int> ids;
detectorParameters.markerBorderBits = markerBorder;
detector.setDetectorParameters(detectorParameters);
detector.detectMarkers(img, corners, ids, rejected);
// remove a marker from detection
int markersBeforeDelete = (int)ids.size();
if(markersBeforeDelete < 2) continue;
rejected.push_back(corners[0]);
corners.erase(corners.begin(), corners.begin() + 1);
ids.erase(ids.begin(), ids.begin() + 1);
// try to refind the erased marker
detector.refineDetectedMarkers(img, gridboard, corners, ids, rejected, cameraMatrix,
distCoeffs, noArray());
// check result
if((int)ids.size() < markersBeforeDelete) {
ts->printf(cvtest::TS::LOG, "Error in refine detected markers");
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
return;
}
}
}
}
}
TEST(CV_ArucoBoardPose, accuracy) {
CV_ArucoBoardPose test(ArucoAlgParams::USE_DEFAULT);
test.safe_run();
}
typedef CV_ArucoBoardPose CV_Aruco3BoardPose;
TEST(CV_Aruco3BoardPose, accuracy) {
CV_Aruco3BoardPose test(ArucoAlgParams::USE_ARUCO3);
test.safe_run();
}
typedef CV_ArucoRefine CV_Aruco3Refine;
TEST(CV_ArucoRefine, accuracy) {
CV_ArucoRefine test(ArucoAlgParams::USE_DEFAULT);
test.safe_run();
}
TEST(CV_Aruco3Refine, accuracy) {
CV_Aruco3Refine test(ArucoAlgParams::USE_ARUCO3);
test.safe_run();
}
TEST(CV_ArucoBoardPose, CheckNegativeZ)
{
double matrixData[9] = { -3.9062571886921410e+02, 0., 4.2350000000000000e+02,
0., 3.9062571886921410e+02, 2.3950000000000000e+02,
0., 0., 1 };
cv::Mat cameraMatrix = cv::Mat(3, 3, CV_64F, matrixData);
vector<cv::Point3f> pts3d1, pts3d2;
pts3d1.push_back(cv::Point3f(0.326198f, -0.030621f, 0.303620f));
pts3d1.push_back(cv::Point3f(0.325340f, -0.100594f, 0.301862f));
pts3d1.push_back(cv::Point3f(0.255859f, -0.099530f, 0.293416f));
pts3d1.push_back(cv::Point3f(0.256717f, -0.029557f, 0.295174f));
pts3d2.push_back(cv::Point3f(-0.033144f, -0.034819f, 0.245216f));
pts3d2.push_back(cv::Point3f(-0.035507f, -0.104705f, 0.241987f));
pts3d2.push_back(cv::Point3f(-0.105289f, -0.102120f, 0.237120f));
pts3d2.push_back(cv::Point3f(-0.102926f, -0.032235f, 0.240349f));
vector<int> tmpIds = {0, 1};
vector<vector<Point3f> > tmpObjectPoints = {pts3d1, pts3d2};
aruco::Board board(tmpObjectPoints, aruco::getPredefinedDictionary(0), tmpIds);
vector<vector<Point2f> > corners;
vector<Point2f> pts2d;
pts2d.push_back(cv::Point2f(37.7f, 203.3f));
pts2d.push_back(cv::Point2f(38.5f, 120.5f));
pts2d.push_back(cv::Point2f(105.5f, 115.8f));
pts2d.push_back(cv::Point2f(104.2f, 202.7f));
corners.push_back(pts2d);
pts2d.clear();
pts2d.push_back(cv::Point2f(476.0f, 184.2f));
pts2d.push_back(cv::Point2f(479.6f, 73.8f));
pts2d.push_back(cv::Point2f(590.9f, 77.0f));
pts2d.push_back(cv::Point2f(587.5f, 188.1f));
corners.push_back(pts2d);
Vec3d rvec, tvec;
int nUsed = 0;
{
Mat objPoints, imgPoints; // get object and image points for the solvePnP function
board.matchImagePoints(corners, board.getIds(), objPoints, imgPoints);
nUsed = (int)objPoints.total()/4;
solvePnP(objPoints, imgPoints, cameraMatrix, Mat(), rvec, tvec);
}
ASSERT_EQ(nUsed, 2);
cv::Matx33d rotm; cv::Point3d out;
cv::Rodrigues(rvec, rotm);
out = cv::Point3d(tvec) + rotm*Point3d(board.getObjPoints()[0][0]);
ASSERT_GT(out.z, 0);
corners.clear(); pts2d.clear();
pts2d.push_back(cv::Point2f(38.4f, 204.5f));
pts2d.push_back(cv::Point2f(40.0f, 124.7f));
pts2d.push_back(cv::Point2f(102.0f, 119.1f));
pts2d.push_back(cv::Point2f(99.9f, 203.6f));
corners.push_back(pts2d);
pts2d.clear();
pts2d.push_back(cv::Point2f(476.0f, 184.3f));
pts2d.push_back(cv::Point2f(479.2f, 75.1f));
pts2d.push_back(cv::Point2f(588.7f, 79.2f));
pts2d.push_back(cv::Point2f(586.3f, 188.5f));
corners.push_back(pts2d);
nUsed = 0;
{
Mat objPoints, imgPoints; // get object and image points for the solvePnP function
board.matchImagePoints(corners, board.getIds(), objPoints, imgPoints);
nUsed = (int)objPoints.total()/4;
solvePnP(objPoints, imgPoints, cameraMatrix, Mat(), rvec, tvec, true);
}
ASSERT_EQ(nUsed, 2);
cv::Rodrigues(rvec, rotm);
out = cv::Point3d(tvec) + rotm*Point3d(board.getObjPoints()[0][0]);
ASSERT_GT(out.z, 0);
}
TEST(CV_ArucoGenerateBoard, regression_1226) {
int bwidth = 1600;
int bheight = 1200;
cv::aruco::Dictionary dict = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_50);
cv::aruco::CharucoBoard board(Size(7, 5), 1.0, 0.75, dict);
cv::Size sz(bwidth, bheight);
cv::Mat mat;
ASSERT_NO_THROW(
{
board.generateImage(sz, mat, 0, 1);
});
}
}} // namespace