2012-10-17 07:18:30 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
2013-03-21 17:31:51 +08:00
|
|
|
// and/or other materials provided with the distribution.
|
2012-10-17 07:18:30 +08:00
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
2013-03-21 17:31:51 +08:00
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
2012-10-17 07:18:30 +08:00
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::gpu;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
|
|
|
|
|
|
|
cv::gpu::FAST_GPU::FAST_GPU(int, bool, double) { throw_nogpu(); }
|
|
|
|
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::FAST_GPU::operator ()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat&, std::vector<KeyPoint>&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::FAST_GPU::convertKeypoints(const Mat&, std::vector<KeyPoint>&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::FAST_GPU::release() { throw_nogpu(); }
|
|
|
|
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat&, const GpuMat&) { throw_nogpu(); return 0; }
|
|
|
|
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat&) { throw_nogpu(); return 0; }
|
|
|
|
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
|
|
|
|
cv::gpu::FAST_GPU::FAST_GPU(int _threshold, bool _nonmaxSupression, double _keypointsRatio) :
|
|
|
|
nonmaxSupression(_nonmaxSupression), threshold(_threshold), keypointsRatio(_keypointsRatio), count_(0)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::gpu::FAST_GPU::operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
|
|
|
|
{
|
|
|
|
if (image.empty())
|
|
|
|
return;
|
|
|
|
|
|
|
|
(*this)(image, mask, d_keypoints_);
|
|
|
|
downloadKeypoints(d_keypoints_, keypoints);
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::gpu::FAST_GPU::downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints)
|
|
|
|
{
|
|
|
|
if (d_keypoints.empty())
|
|
|
|
return;
|
|
|
|
|
|
|
|
Mat h_keypoints(d_keypoints);
|
|
|
|
convertKeypoints(h_keypoints, keypoints);
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::gpu::FAST_GPU::convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints)
|
|
|
|
{
|
|
|
|
if (h_keypoints.empty())
|
|
|
|
return;
|
|
|
|
|
|
|
|
CV_Assert(h_keypoints.rows == ROWS_COUNT && h_keypoints.elemSize() == 4);
|
|
|
|
|
|
|
|
int npoints = h_keypoints.cols;
|
|
|
|
|
|
|
|
keypoints.resize(npoints);
|
|
|
|
|
|
|
|
const short2* loc_row = h_keypoints.ptr<short2>(LOCATION_ROW);
|
|
|
|
const float* response_row = h_keypoints.ptr<float>(RESPONSE_ROW);
|
|
|
|
|
|
|
|
for (int i = 0; i < npoints; ++i)
|
|
|
|
{
|
|
|
|
KeyPoint kp(loc_row[i].x, loc_row[i].y, static_cast<float>(FEATURE_SIZE), -1, response_row[i]);
|
|
|
|
keypoints[i] = kp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::gpu::FAST_GPU::operator ()(const GpuMat& img, const GpuMat& mask, GpuMat& keypoints)
|
|
|
|
{
|
|
|
|
calcKeyPointsLocation(img, mask);
|
|
|
|
keypoints.cols = getKeyPoints(keypoints);
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
|
|
{
|
|
|
|
namespace fast
|
|
|
|
{
|
|
|
|
int calcKeypoints_gpu(PtrStepSzb img, PtrStepSzb mask, short2* kpLoc, int maxKeypoints, PtrStepSzi score, int threshold);
|
|
|
|
int nonmaxSupression_gpu(const short2* kpLoc, int count, PtrStepSzi score, short2* loc, float* response);
|
|
|
|
}
|
|
|
|
}}}
|
|
|
|
|
|
|
|
int cv::gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& img, const GpuMat& mask)
|
|
|
|
{
|
|
|
|
using namespace cv::gpu::device::fast;
|
|
|
|
|
|
|
|
CV_Assert(img.type() == CV_8UC1);
|
|
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == img.size()));
|
|
|
|
|
|
|
|
int maxKeypoints = static_cast<int>(keypointsRatio * img.size().area());
|
|
|
|
|
|
|
|
ensureSizeIsEnough(1, maxKeypoints, CV_16SC2, kpLoc_);
|
|
|
|
|
|
|
|
if (nonmaxSupression)
|
|
|
|
{
|
|
|
|
ensureSizeIsEnough(img.size(), CV_32SC1, score_);
|
|
|
|
score_.setTo(Scalar::all(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
count_ = calcKeypoints_gpu(img, mask, kpLoc_.ptr<short2>(), maxKeypoints, nonmaxSupression ? score_ : PtrStepSzi(), threshold);
|
|
|
|
count_ = std::min(count_, maxKeypoints);
|
|
|
|
|
|
|
|
return count_;
|
|
|
|
}
|
|
|
|
|
|
|
|
int cv::gpu::FAST_GPU::getKeyPoints(GpuMat& keypoints)
|
|
|
|
{
|
|
|
|
using namespace cv::gpu::device::fast;
|
|
|
|
|
|
|
|
if (count_ == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ensureSizeIsEnough(ROWS_COUNT, count_, CV_32FC1, keypoints);
|
|
|
|
|
|
|
|
if (nonmaxSupression)
|
|
|
|
return nonmaxSupression_gpu(kpLoc_.ptr<short2>(), count_, score_, keypoints.ptr<short2>(LOCATION_ROW), keypoints.ptr<float>(RESPONSE_ROW));
|
|
|
|
|
|
|
|
GpuMat locRow(1, count_, kpLoc_.type(), keypoints.ptr(0));
|
|
|
|
kpLoc_.colRange(0, count_).copyTo(locRow);
|
|
|
|
keypoints.row(1).setTo(Scalar::all(0));
|
|
|
|
|
|
|
|
return count_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::gpu::FAST_GPU::release()
|
|
|
|
{
|
|
|
|
kpLoc_.release();
|
|
|
|
score_.release();
|
|
|
|
|
|
|
|
d_keypoints_.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|