opencv/modules/gpu/test/nvidia/TestHaarCascadeLoader.cpp

124 lines
4.5 KiB
C++
Raw Normal View History

/*
* Copyright 1993-2010 NVIDIA Corporation. All rights reserved.
*
* NVIDIA Corporation and its licensors retain all intellectual
* property and proprietary rights in and to this software and
* related documentation and any modifications thereto.
* Any use, reproduction, disclosure, or distribution of this
* software and related documentation without an express license
* agreement from NVIDIA Corporation is strictly prohibited.
*/
#include "TestHaarCascadeLoader.h"
#include "NCVHaarObjectDetection.hpp"
TestHaarCascadeLoader::TestHaarCascadeLoader(std::string testName, std::string cascadeName)
:
NCVTestProvider(testName),
cascadeName(cascadeName)
{
}
bool TestHaarCascadeLoader::toString(std::ofstream &strOut)
{
strOut << "cascadeName=" << cascadeName << std::endl;
return true;
}
bool TestHaarCascadeLoader::init()
{
return true;
}
bool TestHaarCascadeLoader::process()
{
NCVStatus ncvStat;
bool rcode = false;
Ncv32u numStages, numNodes, numFeatures;
Ncv32u numStages_2 = 0, numNodes_2 = 0, numFeatures_2 = 0;
ncvStat = ncvHaarGetClassifierSize(this->cascadeName, numStages, numNodes, numFeatures);
ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
NCVVectorAlloc<HaarStage64> h_HaarStages(*this->allocatorCPU.get(), numStages);
ncvAssertReturn(h_HaarStages.isMemAllocated(), false);
NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes(*this->allocatorCPU.get(), numNodes);
ncvAssertReturn(h_HaarNodes.isMemAllocated(), false);
NCVVectorAlloc<HaarFeature64> h_HaarFeatures(*this->allocatorCPU.get(), numFeatures);
ncvAssertReturn(h_HaarFeatures.isMemAllocated(), false);
NCVVectorAlloc<HaarStage64> h_HaarStages_2(*this->allocatorCPU.get(), numStages);
ncvAssertReturn(h_HaarStages_2.isMemAllocated(), false);
NCVVectorAlloc<HaarClassifierNode128> h_HaarNodes_2(*this->allocatorCPU.get(), numNodes);
ncvAssertReturn(h_HaarNodes_2.isMemAllocated(), false);
NCVVectorAlloc<HaarFeature64> h_HaarFeatures_2(*this->allocatorCPU.get(), numFeatures);
ncvAssertReturn(h_HaarFeatures_2.isMemAllocated(), false);
HaarClassifierCascadeDescriptor haar;
HaarClassifierCascadeDescriptor haar_2;
NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting());
NCV_SKIP_COND_BEGIN
const std::string testNvbinName = "test.nvbin";
ncvStat = ncvHaarLoadFromFile_host(this->cascadeName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
ncvStat = ncvHaarStoreNVBIN_host(testNvbinName, haar, h_HaarStages, h_HaarNodes, h_HaarFeatures);
ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
ncvStat = ncvHaarGetClassifierSize(testNvbinName, numStages_2, numNodes_2, numFeatures_2);
ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
ncvStat = ncvHaarLoadFromFile_host(testNvbinName, haar_2, h_HaarStages_2, h_HaarNodes_2, h_HaarFeatures_2);
ncvAssertReturn(ncvStat == NCV_SUCCESS, false);
NCV_SKIP_COND_END
//bit-to-bit check
bool bLoopVirgin = true;
NCV_SKIP_COND_BEGIN
if (
numStages_2 != numStages ||
numNodes_2 != numNodes ||
numFeatures_2 != numFeatures ||
haar.NumStages != haar_2.NumStages ||
haar.NumClassifierRootNodes != haar_2.NumClassifierRootNodes ||
haar.NumClassifierTotalNodes != haar_2.NumClassifierTotalNodes ||
haar.NumFeatures != haar_2.NumFeatures ||
haar.ClassifierSize.width != haar_2.ClassifierSize.width ||
haar.ClassifierSize.height != haar_2.ClassifierSize.height ||
haar.bNeedsTiltedII != haar_2.bNeedsTiltedII ||
haar.bHasStumpsOnly != haar_2.bHasStumpsOnly )
{
bLoopVirgin = false;
}
if (memcmp(h_HaarStages.ptr(), h_HaarStages_2.ptr(), haar.NumStages * sizeof(HaarStage64)) ||
memcmp(h_HaarNodes.ptr(), h_HaarNodes_2.ptr(), haar.NumClassifierTotalNodes * sizeof(HaarClassifierNode128)) ||
memcmp(h_HaarFeatures.ptr(), h_HaarFeatures_2.ptr(), haar.NumFeatures * sizeof(HaarFeature64)) )
{
bLoopVirgin = false;
}
NCV_SKIP_COND_END
if (bLoopVirgin)
{
rcode = true;
}
return rcode;
}
bool TestHaarCascadeLoader::deinit()
{
return true;
}