2013-09-24 01:00:49 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
class AffineTransformerImpl : public AffineTransformer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
/* Constructors */
|
|
|
|
AffineTransformerImpl()
|
|
|
|
{
|
|
|
|
fullAffine = true;
|
|
|
|
name_ = "ShapeTransformer.AFF";
|
|
|
|
}
|
|
|
|
|
|
|
|
AffineTransformerImpl(bool _fullAffine)
|
|
|
|
{
|
|
|
|
fullAffine = _fullAffine;
|
|
|
|
name_ = "ShapeTransformer.AFF";
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Destructor */
|
|
|
|
~AffineTransformerImpl()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual AlgorithmInfo* info() const { return 0; }
|
|
|
|
|
|
|
|
//! the main operator
|
|
|
|
virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches);
|
|
|
|
virtual float applyTransformation(InputArray input, OutputArray output=noArray());
|
|
|
|
virtual void warpImage(InputArray transformingImage, OutputArray output,
|
|
|
|
int flags, int borderMode, const Scalar& borderValue) const;
|
|
|
|
|
|
|
|
//! Setters/Getters
|
|
|
|
virtual void setFullAffine(bool _fullAffine) {fullAffine=_fullAffine;}
|
|
|
|
virtual bool getFullAffine() const {return fullAffine;}
|
|
|
|
|
|
|
|
//! write/read
|
|
|
|
virtual void write(FileStorage& fs) const
|
|
|
|
{
|
|
|
|
fs << "name" << name_
|
|
|
|
<< "affine_type" << fullAffine;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void read(const FileNode& fn)
|
|
|
|
{
|
|
|
|
CV_Assert( (String)fn["name"] == name_ );
|
2013-09-24 03:24:27 +08:00
|
|
|
fullAffine = (bool)int(fn["affine_type"]);
|
2013-09-24 01:00:49 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
bool fullAffine;
|
|
|
|
Mat affineMat;
|
|
|
|
float transformCost;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
String name_;
|
|
|
|
};
|
|
|
|
|
|
|
|
void AffineTransformerImpl::warpImage(InputArray transformingImage, OutputArray output,
|
|
|
|
int flags, int borderMode, const Scalar& borderValue) const
|
|
|
|
{
|
|
|
|
CV_Assert(!affineMat.empty());
|
|
|
|
warpAffine(transformingImage, output, affineMat, transformingImage.getMat().size(), flags, borderMode, borderValue);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static Mat _localAffineEstimate(const std::vector<Point2f>& shape1, const std::vector<Point2f>& shape2,
|
|
|
|
bool fullAfine)
|
|
|
|
{
|
|
|
|
Mat out(2,3,CV_32F);
|
|
|
|
int siz=2*shape1.size();
|
|
|
|
|
|
|
|
if (fullAfine)
|
|
|
|
{
|
|
|
|
Mat matM(siz, 6, CV_32F);
|
|
|
|
Mat matP(siz,1,CV_32F);
|
|
|
|
int contPt=0;
|
|
|
|
for (int ii=0; ii<siz; ii++)
|
|
|
|
{
|
|
|
|
Mat therow = Mat::zeros(1,6,CV_32F);
|
|
|
|
if (ii%2==0)
|
|
|
|
{
|
|
|
|
therow.at<float>(0,0)=shape1[contPt].x;
|
|
|
|
therow.at<float>(0,1)=shape1[contPt].y;
|
|
|
|
therow.at<float>(0,2)=1;
|
|
|
|
therow.row(0).copyTo(matM.row(ii));
|
|
|
|
matP.at<float>(ii,0) = shape2[contPt].x;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
therow.at<float>(0,3)=shape1[contPt].x;
|
|
|
|
therow.at<float>(0,4)=shape1[contPt].y;
|
|
|
|
therow.at<float>(0,5)=1;
|
|
|
|
therow.row(0).copyTo(matM.row(ii));
|
|
|
|
matP.at<float>(ii,0) = shape2[contPt].y;
|
|
|
|
contPt++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Mat sol;
|
|
|
|
solve(matM, matP, sol, DECOMP_SVD);
|
|
|
|
out = sol.reshape(0,2);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
Mat matM(siz, 4, CV_32F);
|
|
|
|
Mat matP(siz,1,CV_32F);
|
|
|
|
int contPt=0;
|
|
|
|
for (int ii=0; ii<siz; ii++)
|
|
|
|
{
|
|
|
|
Mat therow = Mat::zeros(1,4,CV_32F);
|
|
|
|
if (ii%2==0)
|
|
|
|
{
|
|
|
|
therow.at<float>(0,0)=shape1[contPt].x;
|
|
|
|
therow.at<float>(0,1)=shape1[contPt].y;
|
|
|
|
therow.at<float>(0,2)=1;
|
|
|
|
therow.row(0).copyTo(matM.row(ii));
|
|
|
|
matP.at<float>(ii,0) = shape2[contPt].x;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
therow.at<float>(0,0)=-shape1[contPt].y;
|
|
|
|
therow.at<float>(0,1)=shape1[contPt].x;
|
|
|
|
therow.at<float>(0,3)=1;
|
|
|
|
therow.row(0).copyTo(matM.row(ii));
|
|
|
|
matP.at<float>(ii,0) = shape2[contPt].y;
|
|
|
|
contPt++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Mat sol;
|
|
|
|
solve(matM, matP, sol, DECOMP_SVD);
|
|
|
|
out.at<float>(0,0)=sol.at<float>(0,0);
|
|
|
|
out.at<float>(0,1)=sol.at<float>(1,0);
|
|
|
|
out.at<float>(0,2)=sol.at<float>(2,0);
|
|
|
|
out.at<float>(1,0)=-sol.at<float>(1,0);
|
|
|
|
out.at<float>(1,1)=sol.at<float>(0,0);
|
|
|
|
out.at<float>(1,2)=sol.at<float>(3,0);
|
|
|
|
}
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AffineTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2, std::vector<DMatch>& _matches)
|
|
|
|
{
|
|
|
|
Mat pts1 = _pts1.getMat();
|
|
|
|
Mat pts2 = _pts2.getMat();
|
|
|
|
CV_Assert((pts1.channels()==2) & (pts1.cols>0) & (pts2.channels()==2) & (pts2.cols>0));
|
|
|
|
CV_Assert(_matches.size()>1);
|
|
|
|
|
|
|
|
if (pts1.type() != CV_32F)
|
|
|
|
pts1.convertTo(pts1, CV_32F);
|
|
|
|
if (pts2.type() != CV_32F)
|
|
|
|
pts2.convertTo(pts2, CV_32F);
|
|
|
|
|
|
|
|
// Use only valid matchings //
|
|
|
|
std::vector<DMatch> matches;
|
|
|
|
for (size_t i=0; i<_matches.size(); i++)
|
|
|
|
{
|
|
|
|
if (_matches[i].queryIdx<pts1.cols &&
|
|
|
|
_matches[i].trainIdx<pts2.cols)
|
|
|
|
{
|
|
|
|
matches.push_back(_matches[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Organizing the correspondent points in vector style //
|
|
|
|
std::vector<Point2f> shape1; // transforming shape
|
|
|
|
std::vector<Point2f> shape2; // target shape
|
|
|
|
for (size_t i=0; i<matches.size(); i++)
|
|
|
|
{
|
|
|
|
Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx);
|
|
|
|
shape1.push_back(pt1);
|
|
|
|
|
|
|
|
Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx);
|
|
|
|
shape2.push_back(pt2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// estimateRigidTransform //
|
|
|
|
Mat affine;
|
|
|
|
estimateRigidTransform(shape1, shape2, fullAffine).convertTo(affine, CV_32F);
|
|
|
|
|
|
|
|
if (affine.empty())
|
|
|
|
affine=_localAffineEstimate(shape1, shape2, fullAffine); //In case there is not good solution, just give a LLS based one
|
|
|
|
|
|
|
|
affineMat = affine;
|
|
|
|
}
|
|
|
|
|
|
|
|
float AffineTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts)
|
|
|
|
{
|
|
|
|
Mat pts1 = inPts.getMat();
|
|
|
|
CV_Assert((pts1.channels()==2) & (pts1.cols>0));
|
|
|
|
|
|
|
|
//Apply transformation in the complete set of points
|
|
|
|
Mat fAffine;
|
|
|
|
transform(pts1, fAffine, affineMat);
|
|
|
|
|
|
|
|
// Ensambling output //
|
|
|
|
if (outPts.needed())
|
|
|
|
{
|
|
|
|
outPts.create(1,fAffine.cols, CV_32FC2);
|
|
|
|
Mat outMat = outPts.getMat();
|
|
|
|
for (int i=0; i<fAffine.cols; i++)
|
|
|
|
outMat.at<Point2f>(0,i)=fAffine.at<Point2f>(0,i);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Updating Transform Cost //
|
|
|
|
Mat Af(2, 2, CV_32F);
|
|
|
|
Af.at<float>(0,0)=affineMat.at<float>(0,0);
|
|
|
|
Af.at<float>(0,1)=affineMat.at<float>(1,0);
|
|
|
|
Af.at<float>(1,0)=affineMat.at<float>(0,1);
|
|
|
|
Af.at<float>(1,1)=affineMat.at<float>(1,1);
|
|
|
|
SVD mysvd(Af, SVD::NO_UV);
|
|
|
|
Mat singVals=mysvd.w;
|
|
|
|
transformCost=std::log((singVals.at<float>(0,0)+FLT_MIN)/(singVals.at<float>(1,0)+FLT_MIN));
|
|
|
|
|
|
|
|
return transformCost;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr <AffineTransformer> createAffineTransformer(bool fullAffine)
|
|
|
|
{
|
|
|
|
return Ptr<AffineTransformer>( new AffineTransformerImpl(fullAffine) );
|
|
|
|
}
|
|
|
|
|
|
|
|
} // cv
|