2012-04-30 22:33:52 +08:00
Feature Detection and Description
=================================
.. highlight :: cpp
RandomizedTree
--------------
.. ocv:class :: RandomizedTree
Class containing a base structure for `` RTreeClassifier `` . ::
class CV_EXPORTS RandomizedTree
{
public:
friend class RTreeClassifier;
RandomizedTree();
~RandomizedTree();
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng, int depth, int views,
size_t reduced_num_dim, int num_quant_bits);
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng, PatchGenerator &make_patch, int depth,
int views, size_t reduced_num_dim, int num_quant_bits);
// next two functions are EXPERIMENTAL
//(do not use unless you know exactly what you do)
static void quantizeVector(float *vec, int dim, int N, float bnds[2],
int clamp_mode=0);
static void quantizeVector(float *src, int dim, int N, float bnds[2],
uchar *dst);
// patch_data must be a 32x32 array (no row padding)
float* getPosterior(uchar* patch_data);
const float* getPosterior(uchar* patch_data) const;
uchar* getPosterior2(uchar* patch_data);
void read(const char* file_name, int num_quant_bits);
void read(std::istream &is, int num_quant_bits);
void write(const char* file_name) const;
void write(std::ostream &os) const;
int classes() { return classes_; }
int depth() { return depth_; }
void discardFloatPosteriors() { freePosteriors(1); }
inline void applyQuantization(int num_quant_bits)
{ makePosteriors2(num_quant_bits); }
private:
int classes_;
int depth_;
int num_leaves_;
std::vector<RTreeNode> nodes_;
float **posteriors_; // 16-byte aligned posteriors
uchar **posteriors2_; // 16-byte aligned posteriors
std::vector<int> leaf_counts_;
void createNodes(int num_nodes, RNG &rng);
void allocPosteriorsAligned(int num_leaves, int num_classes);
void freePosteriors(int which);
// which: 1=posteriors_, 2=posteriors2_, 3=both
void init(int classes, int depth, RNG &rng);
void addExample(int class_id, uchar* patch_data);
void finalize(size_t reduced_num_dim, int num_quant_bits);
int getIndex(uchar* patch_data) const;
inline float* getPosteriorByIndex(int index);
inline uchar* getPosteriorByIndex2(int index);
inline const float* getPosteriorByIndex(int index) const;
void convertPosteriorsToChar();
void makePosteriors2(int num_quant_bits);
void compressLeaves(size_t reduced_num_dim);
void estimateQuantPercForPosteriors(float perc[2]);
};
RandomizedTree::train
-------------------------
Trains a randomized tree using an input set of keypoints.
.. ocv:function :: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
.. ocv:function :: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits)
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.
:param rng: Random-number generator used for training.
:param make_patch: Patch generator used for training.
:param depth: Maximum tree depth.
:param views: Number of random views of each keypoint neighborhood to generate.
:param reduced_num_dim: Number of dimensions used in the compressed signature.
:param num_quant_bits: Number of bits used for quantization.
RandomizedTree::read
------------------------
Reads a pre-saved randomized tree from a file or stream.
.. ocv:function :: read(const char* file_name, int num_quant_bits)
.. ocv:function :: read(std::istream &is, int num_quant_bits)
:param file_name: Name of the file that contains randomized tree data.
:param is: Input stream associated with the file that contains randomized tree data.
:param num_quant_bits: Number of bits used for quantization.
RandomizedTree::write
-------------------------
Writes the current randomized tree to a file or stream.
.. ocv:function :: void write(const char* file_name) const
.. ocv:function :: void write(std::ostream &os) const
:param file_name: Name of the file where randomized tree data is stored.
:param os: Output stream associated with the file where randomized tree data is stored.
RandomizedTree::applyQuantization
-------------------------------------
.. ocv:function :: void applyQuantization(int num_quant_bits)
Applies quantization to the current randomized tree.
:param num_quant_bits: Number of bits used for quantization.
RTreeNode
---------
2012-05-28 15:36:14 +08:00
.. ocv:struct :: RTreeNode
2012-04-30 22:33:52 +08:00
Class containing a base structure for `` RandomizedTree `` . ::
struct RTreeNode
{
short offset1, offset2;
RTreeNode() {}
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
: offset1(y1*PATCH_SIZE + x1),
offset2(y2*PATCH_SIZE + x2)
{}
//! Left child on 0, right child on 1
inline bool operator() (uchar* patch_data) const
{
return patch_data[offset1] > patch_data[offset2];
}
};
RTreeClassifier
---------------
.. ocv:class :: RTreeClassifier
Class containing `` RTreeClassifier `` . It represents the Calonder descriptor originally introduced by Michael Calonder. ::
class CV_EXPORTS RTreeClassifier
{
public:
static const int DEFAULT_TREES = 48;
static const size_t DEFAULT_NUM_QUANT_BITS = 4;
RTreeClassifier();
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = DEFAULT_DEPTH,
int views = DEFAULT_VIEWS,
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
bool print_status = true);
void train(std::vector<BaseKeypoint> const& base_set,
RNG &rng,
PatchGenerator &make_patch,
int num_trees = RTreeClassifier::DEFAULT_TREES,
int depth = DEFAULT_DEPTH,
int views = DEFAULT_VIEWS,
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
bool print_status = true);
// sig must point to a memory block of at least
//classes()*sizeof(float|uchar) bytes
void getSignature(IplImage *patch, uchar * sig);
void getSignature(IplImage *patch, float * sig);
void getSparseSignature(IplImage *patch, float * sig,
float thresh);
static int countNonZeroElements(float *vec, int n, double tol=1e-10);
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1,
int sig_len=176);
static inline uchar* safeSignatureAlloc(int num_sig=1,
int sig_len=176);
inline int classes() { return classes_; }
inline int original_num_classes()
{ return original_num_classes_; }
void setQuantization(int num_quant_bits);
void discardFloatPosteriors();
void read(const char* file_name);
void read(std::istream &is);
void write(const char* file_name) const;
void write(std::ostream &os) const;
std::vector<RandomizedTree> trees_;
private:
int classes_;
int num_quant_bits_;
uchar **posteriors_;
ushort *ptemp_;
int original_num_classes_;
bool keep_floats_;
};
RTreeClassifier::train
--------------------------
Trains a randomized tree classifier using an input set of keypoints.
.. ocv:function :: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
.. ocv:function :: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true)
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.
:param rng: Random-number generator used for training.
:param make_patch: Patch generator used for training.
:param num_trees: Number of randomized trees used in ``RTreeClassificator`` .
:param depth: Maximum tree depth.
:param views: Number of random views of each keypoint neighborhood to generate.
:param reduced_num_dim: Number of dimensions used in the compressed signature.
:param num_quant_bits: Number of bits used for quantization.
:param print_status: Current status of training printed on the console.
RTreeClassifier::getSignature
---------------------------------
Returns a signature for an image patch.
.. ocv:function :: void getSignature(IplImage *patch, uchar * sig)
.. ocv:function :: void getSignature(IplImage *patch, float * sig)
:param patch: Image patch to calculate the signature for.
:param sig: Output signature (array dimension is ``reduced_num_dim)`` .
RTreeClassifier::getSparseSignature
---------------------------------------
Returns a sparse signature for an image patch
.. ocv:function :: void getSparseSignature(IplImage *patch, float * sig, float thresh)
:param patch: Image patch to calculate the signature for.
:param sig: Output signature (array dimension is ``reduced_num_dim)`` .
:param thresh: Threshold used for compressing the signature.
Returns a signature for an image patch similarly to `` getSignature `` but uses a threshold for removing all signature elements below the threshold so that the signature is compressed.
RTreeClassifier::countNonZeroElements
-----------------------------------------
Returns the number of non-zero elements in an input array.
.. ocv:function :: static int countNonZeroElements(float *vec, int n, double tol=1e-10)
:param vec: Input vector containing float elements.
:param n: Input vector size.
:param tol: Threshold used for counting elements. All elements less than ``tol`` are considered as zero elements.
RTreeClassifier::read
-------------------------
Reads a pre-saved `` RTreeClassifier `` from a file or stream.
.. ocv:function :: read(const char* file_name)
.. ocv:function :: read(std::istream& is)
:param file_name: Name of the file that contains randomized tree data.
:param is: Input stream associated with the file that contains randomized tree data.
RTreeClassifier::write
--------------------------
Writes the current `` RTreeClassifier `` to a file or stream.
.. ocv:function :: void write(const char* file_name) const
.. ocv:function :: void write(std::ostream &os) const
:param file_name: Name of the file where randomized tree data is stored.
:param os: Output stream associated with the file where randomized tree data is stored.
RTreeClassifier::setQuantization
------------------------------------
Applies quantization to the current randomized tree.
.. ocv:function :: void setQuantization(int num_quant_bits)
:param num_quant_bits: Number of bits used for quantization.
The example below demonstrates the usage of `` RTreeClassifier `` for matching the features. The features are extracted from the test and train images with SURF. Output is
:math: `best\_corr` and
:math: `best\_corr\_idx` arrays that keep the best probabilities and corresponding features indices for every train feature. ::
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq *objectKeypoints = 0, * objectDescriptors = 0;
CvSeq *imageKeypoints = 0, * imageDescriptors = 0;
CvSURFParams params = cvSURFParams(500, 1);
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors,
storage, params );
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors,
storage, params );
RTreeClassifier detector;
int patch_width = PATCH_SIZE;
iint patch_height = PATCH_SIZE;
vector<BaseKeypoint> base_set;
int i=0;
CvSURFPoint* point;
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++)
{
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i);
base_set.push_back(
BaseKeypoint(point->pt.x,point->pt.y,train_image));
}
//Detector training
RNG rng( cvGetTickCount() );
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,
-CV_PI/3,CV_PI/3);
printf("RTree Classifier training...n");
detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000,
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS);
printf("Donen");
float* signature = new float[detector.original_num_classes()];
float* best_corr;
int* best_corr_idx;
if (imageKeypoints->total > 0)
{
best_corr = new float[imageKeypoints->total];
best_corr_idx = new int[imageKeypoints->total];
}
for(i=0; i < imageKeypoints->total; i++)
{
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i);
int part_idx = -1;
float prob = 0.0f;
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2,
(int)(point->pt.y) - patch_height/2,
patch_width, patch_height);
cvSetImageROI(test_image, roi);
roi = cvGetImageROI(test_image);
if(roi.width != patch_width || roi.height != patch_height)
{
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
}
else
{
cvSetImageROI(test_image, roi);
IplImage* roi_image =
cvCreateImage(cvSize(roi.width, roi.height),
test_image->depth, test_image->nChannels);
cvCopy(test_image,roi_image);
detector.getSignature(roi_image, signature);
for (int j = 0; j< detector.original_num_classes();j++)
{
if (prob < signature[j])
{
part_idx = j;
prob = signature[j];
}
}
best_corr_idx[i] = part_idx;
best_corr[i] = prob;
if (roi_image)
cvReleaseImage(&roi_image);
}
cvResetImageROI(test_image);
}
..