2012-03-19 17:27:06 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
2012-10-02 02:37:20 +08:00
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
2012-03-19 17:27:06 +08:00
|
|
|
|
|
|
|
void cv::gpu::pyrDown(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::pyrUp(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::ImagePyramid::build(const GpuMat&, int, Stream&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::ImagePyramid::getLayer(GpuMat&, Size, Stream&) const { throw_nogpu(); }
|
|
|
|
|
|
|
|
#else // HAVE_CUDA
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// pyrDown
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
|
|
{
|
|
|
|
namespace imgproc
|
|
|
|
{
|
2012-08-23 21:45:50 +08:00
|
|
|
template <typename T> void pyrDown_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
|
2012-03-19 17:27:06 +08:00
|
|
|
}
|
|
|
|
}}}
|
|
|
|
|
|
|
|
void cv::gpu::pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream)
|
|
|
|
{
|
|
|
|
using namespace cv::gpu::device::imgproc;
|
|
|
|
|
2012-08-23 21:45:50 +08:00
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
|
2012-03-19 17:27:06 +08:00
|
|
|
|
|
|
|
static const func_t funcs[6][4] =
|
|
|
|
{
|
|
|
|
{pyrDown_gpu<uchar> , 0 /*pyrDown_gpu<uchar2>*/ , pyrDown_gpu<uchar3> , pyrDown_gpu<uchar4> },
|
|
|
|
{0 /*pyrDown_gpu<schar>*/, 0 /*pyrDown_gpu<schar2>*/ , 0 /*pyrDown_gpu<schar3>*/, 0 /*pyrDown_gpu<schar4>*/},
|
|
|
|
{pyrDown_gpu<ushort> , 0 /*pyrDown_gpu<ushort2>*/, pyrDown_gpu<ushort3> , pyrDown_gpu<ushort4> },
|
|
|
|
{pyrDown_gpu<short> , 0 /*pyrDown_gpu<short2>*/ , pyrDown_gpu<short3> , pyrDown_gpu<short4> },
|
|
|
|
{0 /*pyrDown_gpu<int>*/ , 0 /*pyrDown_gpu<int2>*/ , 0 /*pyrDown_gpu<int3>*/ , 0 /*pyrDown_gpu<int4>*/ },
|
|
|
|
{pyrDown_gpu<float> , 0 /*pyrDown_gpu<float2>*/ , pyrDown_gpu<float3> , pyrDown_gpu<float4> }
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
|
|
|
|
|
|
|
|
const func_t func = funcs[src.depth()][src.channels() - 1];
|
|
|
|
CV_Assert(func != 0);
|
|
|
|
|
|
|
|
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());
|
|
|
|
|
|
|
|
func(src, dst, StreamAccessor::getStream(stream));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// pyrUp
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
|
|
{
|
|
|
|
namespace imgproc
|
|
|
|
{
|
2012-08-23 21:45:50 +08:00
|
|
|
template <typename T> void pyrUp_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
|
2012-03-19 17:27:06 +08:00
|
|
|
}
|
|
|
|
}}}
|
|
|
|
|
|
|
|
void cv::gpu::pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream)
|
|
|
|
{
|
|
|
|
using namespace cv::gpu::device::imgproc;
|
|
|
|
|
2012-08-23 21:45:50 +08:00
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
|
2012-03-19 17:27:06 +08:00
|
|
|
|
|
|
|
static const func_t funcs[6][4] =
|
|
|
|
{
|
|
|
|
{pyrUp_gpu<uchar> , 0 /*pyrUp_gpu<uchar2>*/ , pyrUp_gpu<uchar3> , pyrUp_gpu<uchar4> },
|
|
|
|
{0 /*pyrUp_gpu<schar>*/, 0 /*pyrUp_gpu<schar2>*/ , 0 /*pyrUp_gpu<schar3>*/, 0 /*pyrUp_gpu<schar4>*/},
|
|
|
|
{pyrUp_gpu<ushort> , 0 /*pyrUp_gpu<ushort2>*/, pyrUp_gpu<ushort3> , pyrUp_gpu<ushort4> },
|
|
|
|
{pyrUp_gpu<short> , 0 /*pyrUp_gpu<short2>*/ , pyrUp_gpu<short3> , pyrUp_gpu<short4> },
|
|
|
|
{0 /*pyrUp_gpu<int>*/ , 0 /*pyrUp_gpu<int2>*/ , 0 /*pyrUp_gpu<int3>*/ , 0 /*pyrUp_gpu<int4>*/ },
|
|
|
|
{pyrUp_gpu<float> , 0 /*pyrUp_gpu<float2>*/ , pyrUp_gpu<float3> , pyrUp_gpu<float4> }
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
|
|
|
|
|
|
|
|
const func_t func = funcs[src.depth()][src.channels() - 1];
|
|
|
|
CV_Assert(func != 0);
|
|
|
|
|
|
|
|
dst.create(src.rows * 2, src.cols * 2, src.type());
|
|
|
|
|
|
|
|
func(src, dst, StreamAccessor::getStream(stream));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// ImagePyramid
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
|
|
{
|
|
|
|
namespace pyramid
|
|
|
|
{
|
2012-08-23 21:45:50 +08:00
|
|
|
template <typename T> void kernelDownsampleX2_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
|
|
|
|
template <typename T> void kernelInterpolateFrom1_gpu(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
|
2012-03-19 17:27:06 +08:00
|
|
|
}
|
|
|
|
}}}
|
|
|
|
|
|
|
|
void cv::gpu::ImagePyramid::build(const GpuMat& img, int numLayers, Stream& stream)
|
|
|
|
{
|
|
|
|
using namespace cv::gpu::device::pyramid;
|
|
|
|
|
2012-08-23 21:45:50 +08:00
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
|
2012-03-19 17:27:06 +08:00
|
|
|
|
|
|
|
static const func_t funcs[6][4] =
|
|
|
|
{
|
|
|
|
{kernelDownsampleX2_gpu<uchar1> , 0 /*kernelDownsampleX2_gpu<uchar2>*/ , kernelDownsampleX2_gpu<uchar3> , kernelDownsampleX2_gpu<uchar4> },
|
|
|
|
{0 /*kernelDownsampleX2_gpu<char1>*/ , 0 /*kernelDownsampleX2_gpu<char2>*/ , 0 /*kernelDownsampleX2_gpu<char3>*/ , 0 /*kernelDownsampleX2_gpu<char4>*/ },
|
|
|
|
{kernelDownsampleX2_gpu<ushort1> , 0 /*kernelDownsampleX2_gpu<ushort2>*/, kernelDownsampleX2_gpu<ushort3> , kernelDownsampleX2_gpu<ushort4> },
|
|
|
|
{0 /*kernelDownsampleX2_gpu<short1>*/ , 0 /*kernelDownsampleX2_gpu<short2>*/ , 0 /*kernelDownsampleX2_gpu<short3>*/, 0 /*kernelDownsampleX2_gpu<short4>*/},
|
|
|
|
{0 /*kernelDownsampleX2_gpu<int1>*/ , 0 /*kernelDownsampleX2_gpu<int2>*/ , 0 /*kernelDownsampleX2_gpu<int3>*/ , 0 /*kernelDownsampleX2_gpu<int4>*/ },
|
|
|
|
{kernelDownsampleX2_gpu<float1> , 0 /*kernelDownsampleX2_gpu<float2>*/ , kernelDownsampleX2_gpu<float3> , kernelDownsampleX2_gpu<float4> }
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_Assert(img.depth() <= CV_32F && img.channels() <= 4);
|
|
|
|
|
|
|
|
const func_t func = funcs[img.depth()][img.channels() - 1];
|
|
|
|
CV_Assert(func != 0);
|
|
|
|
|
|
|
|
layer0_ = img;
|
|
|
|
Size szLastLayer = img.size();
|
|
|
|
nLayers_ = 1;
|
|
|
|
|
|
|
|
if (numLayers <= 0)
|
|
|
|
numLayers = 255; //it will cut-off when any of the dimensions goes 1
|
|
|
|
|
|
|
|
pyramid_.resize(numLayers);
|
|
|
|
|
|
|
|
for (int i = 0; i < numLayers - 1; ++i)
|
|
|
|
{
|
|
|
|
Size szCurLayer(szLastLayer.width / 2, szLastLayer.height / 2);
|
|
|
|
|
|
|
|
if (szCurLayer.width == 0 || szCurLayer.height == 0)
|
|
|
|
break;
|
|
|
|
|
|
|
|
ensureSizeIsEnough(szCurLayer, img.type(), pyramid_[i]);
|
|
|
|
nLayers_++;
|
|
|
|
|
|
|
|
const GpuMat& prevLayer = i == 0 ? layer0_ : pyramid_[i - 1];
|
|
|
|
|
|
|
|
func(prevLayer, pyramid_[i], StreamAccessor::getStream(stream));
|
|
|
|
|
|
|
|
szLastLayer = szCurLayer;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void cv::gpu::ImagePyramid::getLayer(GpuMat& outImg, Size outRoi, Stream& stream) const
|
|
|
|
{
|
|
|
|
using namespace cv::gpu::device::pyramid;
|
|
|
|
|
2012-08-23 21:45:50 +08:00
|
|
|
typedef void (*func_t)(PtrStepSzb src, PtrStepSzb dst, cudaStream_t stream);
|
2012-03-19 17:27:06 +08:00
|
|
|
|
|
|
|
static const func_t funcs[6][4] =
|
|
|
|
{
|
|
|
|
{kernelInterpolateFrom1_gpu<uchar1> , 0 /*kernelInterpolateFrom1_gpu<uchar2>*/ , kernelInterpolateFrom1_gpu<uchar3> , kernelInterpolateFrom1_gpu<uchar4> },
|
|
|
|
{0 /*kernelInterpolateFrom1_gpu<char1>*/ , 0 /*kernelInterpolateFrom1_gpu<char2>*/ , 0 /*kernelInterpolateFrom1_gpu<char3>*/ , 0 /*kernelInterpolateFrom1_gpu<char4>*/ },
|
|
|
|
{kernelInterpolateFrom1_gpu<ushort1> , 0 /*kernelInterpolateFrom1_gpu<ushort2>*/, kernelInterpolateFrom1_gpu<ushort3> , kernelInterpolateFrom1_gpu<ushort4> },
|
|
|
|
{0 /*kernelInterpolateFrom1_gpu<short1>*/, 0 /*kernelInterpolateFrom1_gpu<short2>*/ , 0 /*kernelInterpolateFrom1_gpu<short3>*/, 0 /*kernelInterpolateFrom1_gpu<short4>*/},
|
|
|
|
{0 /*kernelInterpolateFrom1_gpu<int1>*/ , 0 /*kernelInterpolateFrom1_gpu<int2>*/ , 0 /*kernelInterpolateFrom1_gpu<int3>*/ , 0 /*kernelInterpolateFrom1_gpu<int4>*/ },
|
|
|
|
{kernelInterpolateFrom1_gpu<float1> , 0 /*kernelInterpolateFrom1_gpu<float2>*/ , kernelInterpolateFrom1_gpu<float3> , kernelInterpolateFrom1_gpu<float4> }
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_Assert(outRoi.width <= layer0_.cols && outRoi.height <= layer0_.rows && outRoi.width > 0 && outRoi.height > 0);
|
|
|
|
|
|
|
|
ensureSizeIsEnough(outRoi, layer0_.type(), outImg);
|
|
|
|
|
|
|
|
const func_t func = funcs[outImg.depth()][outImg.channels() - 1];
|
|
|
|
CV_Assert(func != 0);
|
|
|
|
|
|
|
|
if (outRoi.width == layer0_.cols && outRoi.height == layer0_.rows)
|
|
|
|
{
|
|
|
|
if (stream)
|
|
|
|
stream.enqueueCopy(layer0_, outImg);
|
|
|
|
else
|
|
|
|
layer0_.copyTo(outImg);
|
|
|
|
}
|
|
|
|
|
|
|
|
float lastScale = 1.0f;
|
|
|
|
float curScale;
|
|
|
|
GpuMat lastLayer = layer0_;
|
|
|
|
GpuMat curLayer;
|
|
|
|
|
|
|
|
for (int i = 0; i < nLayers_ - 1; ++i)
|
|
|
|
{
|
|
|
|
curScale = lastScale * 0.5f;
|
|
|
|
curLayer = pyramid_[i];
|
|
|
|
|
|
|
|
if (outRoi.width == curLayer.cols && outRoi.height == curLayer.rows)
|
|
|
|
{
|
|
|
|
if (stream)
|
|
|
|
stream.enqueueCopy(curLayer, outImg);
|
|
|
|
else
|
|
|
|
curLayer.copyTo(outImg);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (outRoi.width >= curLayer.cols && outRoi.height >= curLayer.rows)
|
|
|
|
break;
|
|
|
|
|
|
|
|
lastScale = curScale;
|
|
|
|
lastLayer = curLayer;
|
|
|
|
}
|
|
|
|
|
|
|
|
func(lastLayer, outImg, StreamAccessor::getStream(stream));
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // HAVE_CUDA
|