opencv/modules/cudaarithm/test/test_reductions.cpp

1085 lines
29 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#ifdef HAVE_CUDA
using namespace cvtest;
////////////////////////////////////////////////////////////////////////////////
// Norm
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(Norm, cv::cuda::DeviceInfo, cv::Size, MatDepth, NormCode, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
int normCode;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
normCode = GET_PARAM(3);
useRoi = GET_PARAM(4);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(Norm, Accuracy)
{
cv::Mat src = randomMat(size, depth);
cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
double val = cv::cuda::norm(loadMat(src, useRoi), normCode, loadMat(mask, useRoi));
double val_gold = cv::norm(src, normCode, mask);
EXPECT_NEAR(val_gold, val, depth < CV_32F ? 0.0 : 1.0);
}
CUDA_TEST_P(Norm, Async)
{
cv::Mat src = randomMat(size, depth);
cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
cv::cuda::Stream stream;
cv::cuda::HostMem dst;
cv::cuda::calcNorm(loadMat(src, useRoi), dst, normCode, loadMat(mask, useRoi), stream);
stream.waitForCompletion();
double val;
dst.createMatHeader().convertTo(cv::Mat(1, 1, CV_64FC1, &val), CV_64F);
double val_gold = cv::norm(src, normCode, mask);
EXPECT_NEAR(val_gold, val, depth < CV_32F ? 0.0 : 1.0);
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Norm, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U),
MatDepth(CV_8S),
MatDepth(CV_16U),
MatDepth(CV_16S),
MatDepth(CV_32S),
MatDepth(CV_32F)),
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// normDiff
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(NormDiff, cv::cuda::DeviceInfo, cv::Size, NormCode, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int normCode;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
normCode = GET_PARAM(2);
useRoi = GET_PARAM(3);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(NormDiff, Accuracy)
{
cv::Mat src1 = randomMat(size, CV_8UC1);
cv::Mat src2 = randomMat(size, CV_8UC1);
2013-08-28 19:45:13 +08:00
double val = cv::cuda::norm(loadMat(src1, useRoi), loadMat(src2, useRoi), normCode);
double val_gold = cv::norm(src1, src2, normCode);
EXPECT_NEAR(val_gold, val, 0.0);
}
CUDA_TEST_P(NormDiff, Async)
{
cv::Mat src1 = randomMat(size, CV_8UC1);
cv::Mat src2 = randomMat(size, CV_8UC1);
cv::cuda::Stream stream;
cv::cuda::HostMem dst;
cv::cuda::calcNormDiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, normCode, stream);
stream.waitForCompletion();
double val;
const cv::Mat val_mat(1, 1, CV_64FC1, &val);
dst.createMatHeader().convertTo(val_mat, CV_64F);
double val_gold = cv::norm(src1, src2, normCode);
EXPECT_NEAR(val_gold, val, 0.0);
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, NormDiff, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF)),
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// Sum
namespace
{
template <typename T>
cv::Scalar absSumImpl(const cv::Mat& src)
{
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
sum[c] += std::abs(src.at<T>(y, x * cn + c));
}
}
return sum;
}
cv::Scalar absSumGold(const cv::Mat& src)
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
static const func_t funcs[] =
{
absSumImpl<uchar>,
absSumImpl<schar>,
absSumImpl<ushort>,
absSumImpl<short>,
absSumImpl<int>,
absSumImpl<float>,
absSumImpl<double>
};
return funcs[src.depth()](src);
}
template <typename T>
cv::Scalar sqrSumImpl(const cv::Mat& src)
{
const int cn = src.channels();
cv::Scalar sum = cv::Scalar::all(0);
for (int y = 0; y < src.rows; ++y)
{
for (int x = 0; x < src.cols; ++x)
{
for (int c = 0; c < cn; ++c)
{
const T val = src.at<T>(y, x * cn + c);
sum[c] += val * val;
}
}
}
return sum;
}
cv::Scalar sqrSumGold(const cv::Mat& src)
{
typedef cv::Scalar (*func_t)(const cv::Mat& src);
static const func_t funcs[] =
{
sqrSumImpl<uchar>,
sqrSumImpl<schar>,
sqrSumImpl<ushort>,
sqrSumImpl<short>,
sqrSumImpl<int>,
sqrSumImpl<float>,
sqrSumImpl<double>
};
return funcs[src.depth()](src);
}
}
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(Sum, cv::cuda::DeviceInfo, cv::Size, MatType, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
bool useRoi;
cv::Mat src;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
useRoi = GET_PARAM(3);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
src = randomMat(size, type, -128.0, 128.0);
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(Sum, Simple)
{
2013-08-28 19:45:13 +08:00
cv::Scalar val = cv::cuda::sum(loadMat(src, useRoi));
cv::Scalar val_gold = cv::sum(src);
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
}
CUDA_TEST_P(Sum, Simple_Async)
{
cv::cuda::Stream stream;
cv::cuda::HostMem dst;
cv::cuda::calcSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
stream.waitForCompletion();
cv::Scalar val;
cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
dst.createMatHeader().convertTo(val_mat, CV_64F);
cv::Scalar val_gold = cv::sum(src);
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
}
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(Sum, Abs)
{
2013-08-28 19:45:13 +08:00
cv::Scalar val = cv::cuda::absSum(loadMat(src, useRoi));
cv::Scalar val_gold = absSumGold(src);
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
}
CUDA_TEST_P(Sum, Abs_Async)
{
cv::cuda::Stream stream;
cv::cuda::HostMem dst;
cv::cuda::calcAbsSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
stream.waitForCompletion();
cv::Scalar val;
cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
dst.createMatHeader().convertTo(val_mat, CV_64F);
cv::Scalar val_gold = absSumGold(src);
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
}
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(Sum, Sqr)
{
2013-08-28 19:45:13 +08:00
cv::Scalar val = cv::cuda::sqrSum(loadMat(src, useRoi));
cv::Scalar val_gold = sqrSumGold(src);
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
}
CUDA_TEST_P(Sum, Sqr_Async)
{
cv::cuda::Stream stream;
cv::cuda::HostMem dst;
cv::cuda::calcSqrSum(loadMat(src, useRoi), dst, cv::noArray(), stream);
stream.waitForCompletion();
cv::Scalar val;
cv::Mat val_mat(dst.size(), CV_64FC(dst.channels()), val.val);
dst.createMatHeader().convertTo(val_mat, CV_64F);
cv::Scalar val_gold = sqrSumGold(src);
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Sum, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
TYPES(CV_8U, CV_64F, 1, 4),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// MinMax
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(MinMax, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
useRoi = GET_PARAM(3);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(MinMax, WithoutMask)
{
cv::Mat src = randomMat(size, depth);
2013-08-28 19:45:13 +08:00
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
2013-08-28 19:45:13 +08:00
cv::cuda::minMax(loadMat(src), &minVal, &maxVal);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal;
2013-08-28 19:45:13 +08:00
cv::cuda::minMax(loadMat(src, useRoi), &minVal, &maxVal);
double minVal_gold, maxVal_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold);
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
}
}
CUDA_TEST_P(MinMax, Async)
{
cv::Mat src = randomMat(size, depth);
cv::cuda::Stream stream;
cv::cuda::HostMem dst;
cv::cuda::findMinMax(loadMat(src, useRoi), dst, cv::noArray(), stream);
stream.waitForCompletion();
double vals[2];
const cv::Mat vals_mat(1, 2, CV_64FC1, &vals[0]);
dst.createMatHeader().convertTo(vals_mat, CV_64F);
double minVal_gold, maxVal_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold);
EXPECT_DOUBLE_EQ(minVal_gold, vals[0]);
EXPECT_DOUBLE_EQ(maxVal_gold, vals[1]);
}
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(MinMax, WithMask)
{
cv::Mat src = randomMat(size, depth);
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
2013-08-28 19:45:13 +08:00
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
2013-08-28 19:45:13 +08:00
cv::cuda::minMax(loadMat(src), &minVal, &maxVal, loadMat(mask));
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal;
2013-08-28 19:45:13 +08:00
cv::cuda::minMax(loadMat(src, useRoi), &minVal, &maxVal, loadMat(mask, useRoi));
double minVal_gold, maxVal_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0, mask);
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
}
}
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(MinMax, NullPtr)
{
cv::Mat src = randomMat(size, depth);
2013-08-28 19:45:13 +08:00
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
2013-08-28 19:45:13 +08:00
cv::cuda::minMax(loadMat(src), &minVal, 0);
cv::cuda::minMax(loadMat(src), 0, &maxVal);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal;
2013-08-28 19:45:13 +08:00
cv::cuda::minMax(loadMat(src, useRoi), &minVal, 0);
cv::cuda::minMax(loadMat(src, useRoi), 0, &maxVal);
double minVal_gold, maxVal_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold, 0, 0);
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
}
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MinMax, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_DEPTH,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// MinMaxLoc
namespace
{
template <typename T>
void expectEqualImpl(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
{
EXPECT_EQ(src.at<T>(loc_gold.y, loc_gold.x), src.at<T>(loc.y, loc.x));
}
void expectEqual(const cv::Mat& src, cv::Point loc_gold, cv::Point loc)
{
typedef void (*func_t)(const cv::Mat& src, cv::Point loc_gold, cv::Point loc);
static const func_t funcs[] =
{
expectEqualImpl<uchar>,
expectEqualImpl<schar>,
expectEqualImpl<ushort>,
expectEqualImpl<short>,
expectEqualImpl<int>,
expectEqualImpl<float>,
expectEqualImpl<double>
};
funcs[src.depth()](src, loc_gold, loc);
}
}
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(MinMaxLoc, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
useRoi = GET_PARAM(3);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(MinMaxLoc, WithoutMask)
{
cv::Mat src = randomMat(size, depth);
2013-08-28 19:45:13 +08:00
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
2013-08-28 19:45:13 +08:00
cv::cuda::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
2013-08-28 19:45:13 +08:00
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc);
double minVal_gold, maxVal_gold;
cv::Point minLoc_gold, maxLoc_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
expectEqual(src, minLoc_gold, minLoc);
expectEqual(src, maxLoc_gold, maxLoc);
}
}
CUDA_TEST_P(MinMaxLoc, Async)
{
cv::Mat src = randomMat(size, depth);
cv::cuda::Stream stream;
cv::cuda::HostMem minMaxVals, locVals;
cv::cuda::findMinMaxLoc(loadMat(src, useRoi), minMaxVals, locVals, cv::noArray(), stream);
stream.waitForCompletion();
double vals[2];
const cv::Mat vals_mat(2, 1, CV_64FC1, &vals[0]);
minMaxVals.createMatHeader().convertTo(vals_mat, CV_64F);
int locs[2];
const cv::Mat locs_mat(2, 1, CV_32SC1, &locs[0]);
locVals.createMatHeader().copyTo(locs_mat);
cv::Point locs2D[] = {
cv::Point(locs[0] % src.cols, locs[0] / src.cols),
cv::Point(locs[1] % src.cols, locs[1] / src.cols),
};
double minVal_gold, maxVal_gold;
cv::Point minLoc_gold, maxLoc_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
EXPECT_DOUBLE_EQ(minVal_gold, vals[0]);
EXPECT_DOUBLE_EQ(maxVal_gold, vals[1]);
expectEqual(src, minLoc_gold, locs2D[0]);
expectEqual(src, maxLoc_gold, locs2D[1]);
}
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(MinMaxLoc, WithMask)
{
cv::Mat src = randomMat(size, depth);
cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0);
2013-08-28 19:45:13 +08:00
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
2013-08-28 19:45:13 +08:00
cv::cuda::minMaxLoc(loadMat(src), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask));
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
2013-08-28 19:45:13 +08:00
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi));
double minVal_gold, maxVal_gold;
cv::Point minLoc_gold, maxLoc_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask);
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
expectEqual(src, minLoc_gold, minLoc);
expectEqual(src, maxLoc_gold, maxLoc);
}
}
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(MinMaxLoc, NullPtr)
{
cv::Mat src = randomMat(size, depth);
2013-08-28 19:45:13 +08:00
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
2013-08-28 19:45:13 +08:00
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
double minVal, maxVal;
cv::Point minLoc, maxLoc;
2013-08-28 19:45:13 +08:00
cv::cuda::minMaxLoc(loadMat(src, useRoi), &minVal, 0, 0, 0);
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, &maxVal, 0, 0);
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, &minLoc, 0);
cv::cuda::minMaxLoc(loadMat(src, useRoi), 0, 0, 0, &maxLoc);
double minVal_gold, maxVal_gold;
cv::Point minLoc_gold, maxLoc_gold;
minMaxLocGold(src, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold);
EXPECT_DOUBLE_EQ(minVal_gold, minVal);
EXPECT_DOUBLE_EQ(maxVal_gold, maxVal);
expectEqual(src, minLoc_gold, minLoc);
expectEqual(src, maxLoc_gold, maxLoc);
}
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MinMaxLoc, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_DEPTH,
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////
// CountNonZero
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(CountNonZero, cv::cuda::DeviceInfo, cv::Size, MatDepth, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
bool useRoi;
cv::Mat src;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
useRoi = GET_PARAM(3);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
cv::Mat srcBase = randomMat(size, CV_8U, 0.0, 1.5);
srcBase.convertTo(src, depth);
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(CountNonZero, Accuracy)
{
2013-08-28 19:45:13 +08:00
if (depth == CV_64F && !supportFeature(devInfo, cv::cuda::NATIVE_DOUBLE))
{
try
{
2013-08-28 19:45:13 +08:00
cv::cuda::countNonZero(loadMat(src));
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsUnsupportedFormat, e.code);
}
}
else
{
2013-08-28 19:45:13 +08:00
int val = cv::cuda::countNonZero(loadMat(src, useRoi));
int val_gold = cv::countNonZero(src);
ASSERT_EQ(val_gold, val);
}
}
CUDA_TEST_P(CountNonZero, Async)
{
cv::cuda::Stream stream;
cv::cuda::HostMem dst;
cv::cuda::countNonZero(loadMat(src, useRoi), dst, stream);
stream.waitForCompletion();
int val;
const cv::Mat val_mat(1, 1, CV_32SC1, &val);
dst.createMatHeader().copyTo(val_mat);
int val_gold = cv::countNonZero(src);
ASSERT_EQ(val_gold, val);
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, CountNonZero, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_DEPTH,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// Reduce
CV_ENUM(ReduceCode, cv::REDUCE_SUM, cv::REDUCE_AVG, cv::REDUCE_MAX, cv::REDUCE_MIN)
#define ALL_REDUCE_CODES testing::Values(ReduceCode(cv::REDUCE_SUM), ReduceCode(cv::REDUCE_AVG), ReduceCode(cv::REDUCE_MAX), ReduceCode(cv::REDUCE_MIN))
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(Reduce, cv::cuda::DeviceInfo, cv::Size, MatDepth, Channels, ReduceCode, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int depth;
int channels;
int reduceOp;
bool useRoi;
int type;
int dst_depth;
int dst_type;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
depth = GET_PARAM(2);
channels = GET_PARAM(3);
reduceOp = GET_PARAM(4);
useRoi = GET_PARAM(5);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
type = CV_MAKE_TYPE(depth, channels);
if (reduceOp == cv::REDUCE_MAX || reduceOp == cv::REDUCE_MIN)
dst_depth = depth;
else if (reduceOp == cv::REDUCE_SUM)
dst_depth = depth == CV_8U ? CV_32S : depth < CV_64F ? CV_32F : depth;
else
dst_depth = depth < CV_32F ? CV_32F : depth;
dst_type = CV_MAKE_TYPE(dst_depth, channels);
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(Reduce, Rows)
{
cv::Mat src = randomMat(size, type);
2013-08-28 19:45:13 +08:00
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols, 1), dst_type, useRoi);
cv::cuda::reduce(loadMat(src, useRoi), dst, 0, reduceOp, dst_depth);
cv::Mat dst_gold;
cv::reduce(src, dst_gold, 0, reduceOp, dst_depth);
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 0.02);
}
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(Reduce, Cols)
{
cv::Mat src = randomMat(size, type);
2013-08-28 19:45:13 +08:00
cv::cuda::GpuMat dst = createMat(cv::Size(src.rows, 1), dst_type, useRoi);
cv::cuda::reduce(loadMat(src, useRoi), dst, 1, reduceOp, dst_depth);
cv::Mat dst_gold;
cv::reduce(src, dst_gold, 1, reduceOp, dst_depth);
dst_gold.cols = dst_gold.rows;
dst_gold.rows = 1;
dst_gold.step = dst_gold.cols * dst_gold.elemSize();
EXPECT_MAT_NEAR(dst_gold, dst, dst_depth < CV_32F ? 0.0 : 0.02);
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Reduce, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatDepth(CV_8U),
MatDepth(CV_16U),
MatDepth(CV_16S),
MatDepth(CV_32F),
MatDepth(CV_64F)),
ALL_CHANNELS,
ALL_REDUCE_CODES,
WHOLE_SUBMAT));
//////////////////////////////////////////////////////////////////////////////
// Normalize
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(Normalize, cv::cuda::DeviceInfo, cv::Size, MatDepth, NormCode, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
int type;
int norm_type;
bool useRoi;
double alpha;
double beta;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
type = GET_PARAM(2);
norm_type = GET_PARAM(3);
useRoi = GET_PARAM(4);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
alpha = 1;
beta = 0;
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(Normalize, WithOutMask)
{
cv::Mat src = randomMat(size, type);
2013-08-28 19:45:13 +08:00
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
cv::cuda::normalize(loadMat(src, useRoi), dst, alpha, beta, norm_type, type);
cv::Mat dst_gold;
cv::normalize(src, dst_gold, alpha, beta, norm_type, type);
Merge remote-tracking branch 'origin/2.4' into merge-2.4 Conflicts: CMakeLists.txt cmake/OpenCVGenAndroidMK.cmake cmake/templates/OpenCV.mk.in doc/tutorials/viz/creating_widgets/creating_widgets.rst doc/tutorials/viz/launching_viz/launching_viz.rst doc/tutorials/viz/table_of_content_viz/images/image_effects.png doc/tutorials/viz/transformations/transformations.rst doc/tutorials/viz/widget_pose/widget_pose.rst modules/core/include/opencv2/core/affine.hpp modules/core/include/opencv2/core/core.hpp modules/gpu/perf/perf_imgproc.cpp modules/gpu/src/cuda/canny.cu modules/gpu/src/cuda/generalized_hough.cu modules/gpu/src/generalized_hough.cpp modules/gpu/src/imgproc.cpp modules/gpu/test/test_color.cpp modules/gpu/test/test_core.cpp modules/gpu/test/test_gpumat.cpp modules/gpu/test/test_hough.cpp modules/nonfree/CMakeLists.txt modules/nonfree/include/opencv2/nonfree/gpu.hpp modules/nonfree/perf/perf_gpu.cpp modules/nonfree/src/cuda/surf.cu modules/nonfree/src/precomp.hpp modules/nonfree/src/surf_gpu.cpp modules/nonfree/test/test_gpu.cpp modules/ocl/perf/perf_haar.cpp modules/stitching/CMakeLists.txt modules/stitching/include/opencv2/stitching/detail/matchers.hpp modules/stitching/include/opencv2/stitching/detail/seam_finders.hpp modules/stitching/include/opencv2/stitching/detail/warpers.hpp modules/stitching/include/opencv2/stitching/warpers.hpp modules/stitching/src/blenders.cpp modules/stitching/src/matchers.cpp modules/stitching/src/precomp.hpp modules/stitching/src/seam_finders.cpp modules/stitching/src/stitcher.cpp modules/stitching/src/warpers.cpp modules/viz/doc/widget.rst modules/viz/include/opencv2/viz/types.hpp modules/viz/include/opencv2/viz/viz3d.hpp modules/viz/include/opencv2/viz/widget_accessor.hpp modules/viz/src/precomp.hpp modules/viz/src/shapes.cpp modules/viz/src/vizcore.cpp modules/viz/src/vtk/vtkCloudMatSink.h modules/viz/src/vtk/vtkCloudMatSource.h modules/viz/test/test_precomp.hpp modules/viz/test/tests_simple.cpp samples/android/tutorial-4-cuda/CMakeLists.txt samples/android/tutorial-4-cuda/jni/Android.mk samples/android/tutorial-4-cuda/src/org/opencv/samples/tutorial4/Tutorial4Activity.java samples/cpp/stitching_detailed.cpp samples/cpp/tutorial_code/viz/creating_widgets.cpp samples/cpp/tutorial_code/viz/launching_viz.cpp samples/cpp/tutorial_code/viz/transformations.cpp samples/cpp/tutorial_code/viz/widget_pose.cpp
2014-02-10 21:50:03 +08:00
EXPECT_MAT_NEAR(dst_gold, dst, type < CV_32F ? 1.0 : 1e-4);
}
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(Normalize, WithMask)
{
cv::Mat src = randomMat(size, type);
cv::Mat mask = randomMat(size, CV_8UC1, 0, 2);
2013-08-28 19:45:13 +08:00
cv::cuda::GpuMat dst = createMat(size, type, useRoi);
dst.setTo(cv::Scalar::all(0));
2013-08-28 19:45:13 +08:00
cv::cuda::normalize(loadMat(src, useRoi), dst, alpha, beta, norm_type, type, loadMat(mask, useRoi));
cv::Mat dst_gold(size, type);
dst_gold.setTo(cv::Scalar::all(0));
cv::normalize(src, dst_gold, alpha, beta, norm_type, type, mask);
EXPECT_MAT_NEAR(dst_gold, dst, type < CV_32F ? 1.0 : 1e-4);
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Normalize, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
ALL_DEPTH,
testing::Values(NormCode(cv::NORM_L1), NormCode(cv::NORM_L2), NormCode(cv::NORM_INF), NormCode(cv::NORM_MINMAX)),
WHOLE_SUBMAT));
////////////////////////////////////////////////////////////////////////////////
// MeanStdDev
2013-08-28 19:45:13 +08:00
PARAM_TEST_CASE(MeanStdDev, cv::cuda::DeviceInfo, cv::Size, UseRoi)
{
2013-08-28 19:45:13 +08:00
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
2013-08-28 19:45:13 +08:00
cv::cuda::setDevice(devInfo.deviceID());
}
};
2013-07-24 17:55:18 +08:00
CUDA_TEST_P(MeanStdDev, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
2013-08-28 19:45:13 +08:00
if (!supportFeature(devInfo, cv::cuda::FEATURE_SET_COMPUTE_13))
{
try
{
cv::Scalar mean;
cv::Scalar stddev;
2013-08-28 19:45:13 +08:00
cv::cuda::meanStdDev(loadMat(src, useRoi), mean, stddev);
}
catch (const cv::Exception& e)
{
ASSERT_EQ(cv::Error::StsNotImplemented, e.code);
}
}
else
{
cv::Scalar mean;
cv::Scalar stddev;
2013-08-28 19:45:13 +08:00
cv::cuda::meanStdDev(loadMat(src, useRoi), mean, stddev);
cv::Scalar mean_gold;
cv::Scalar stddev_gold;
cv::meanStdDev(src, mean_gold, stddev_gold);
EXPECT_SCALAR_NEAR(mean_gold, mean, 1e-5);
EXPECT_SCALAR_NEAR(stddev_gold, stddev, 1e-5);
}
}
CUDA_TEST_P(MeanStdDev, Async)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::Stream stream;
cv::cuda::HostMem dst;
cv::cuda::meanStdDev(loadMat(src, useRoi), dst, stream);
stream.waitForCompletion();
double vals[2];
dst.createMatHeader().copyTo(cv::Mat(1, 2, CV_64FC1, &vals[0]));
cv::Scalar mean_gold;
cv::Scalar stddev_gold;
cv::meanStdDev(src, mean_gold, stddev_gold);
EXPECT_SCALAR_NEAR(mean_gold, cv::Scalar(vals[0]), 1e-5);
EXPECT_SCALAR_NEAR(stddev_gold, cv::Scalar(vals[1]), 1e-5);
}
2013-07-24 17:55:18 +08:00
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, MeanStdDev, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// Integral
PARAM_TEST_CASE(Integral, cv::cuda::DeviceInfo, cv::Size, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(Integral, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_32SC1, useRoi);
cv::cuda::integral(loadMat(src, useRoi), dst);
cv::Mat dst_gold;
cv::integral(src, dst_gold, CV_32S);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, Integral, testing::Combine(
ALL_DEVICES,
testing::Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(768, 1066)),
WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// IntegralSqr
PARAM_TEST_CASE(IntegralSqr, cv::cuda::DeviceInfo, cv::Size, UseRoi)
{
cv::cuda::DeviceInfo devInfo;
cv::Size size;
bool useRoi;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
useRoi = GET_PARAM(2);
cv::cuda::setDevice(devInfo.deviceID());
}
};
CUDA_TEST_P(IntegralSqr, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::cuda::GpuMat dst = createMat(cv::Size(src.cols + 1, src.rows + 1), CV_64FC1, useRoi);
cv::cuda::sqrIntegral(loadMat(src, useRoi), dst);
cv::Mat dst_gold, temp;
cv::integral(src, temp, dst_gold);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(CUDA_Arithm, IntegralSqr, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
#endif // HAVE_CUDA