2017-06-26 18:35:51 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
2017-06-28 16:15:22 +08:00
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
2017-06-26 18:35:51 +08:00
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
|
|
|
#include "layers_common.hpp"
|
|
|
|
#include "op_halide.hpp"
|
|
|
|
#include "opencv2/core/hal/hal.hpp"
|
|
|
|
#include "opencv2/core/hal/intrin.hpp"
|
|
|
|
#include <iostream>
|
|
|
|
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
using namespace cv::dnn::ocl4dnn;
|
|
|
|
#endif
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace dnn
|
|
|
|
{
|
|
|
|
|
|
|
|
class BaseConvolutionLayerImpl : public ConvolutionLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
BaseConvolutionLayerImpl() {}
|
|
|
|
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
|
|
{
|
|
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
|
|
backendId == DNN_BACKEND_HALIDE && haveHalide();
|
|
|
|
}
|
|
|
|
|
|
|
|
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs)
|
|
|
|
{
|
|
|
|
CV_Assert(inputs.size() > 0);
|
|
|
|
|
|
|
|
CV_Assert(blobs.size() >= 1 && blobs.size() <= 2);
|
|
|
|
CV_Assert(blobs[0].dims == 4 && blobs[0].size[3] == kernel.width && blobs[0].size[2] == kernel.height);
|
|
|
|
|
|
|
|
const Mat &input = *inputs[0];
|
|
|
|
CV_Assert(input.dims == 4 && (input.type() == CV_32F || input.type() == CV_64F));
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
CV_Assert(inputs[i]->type() == input.type());
|
|
|
|
CV_Assert(inputs[i]->dims == 4 && inputs[i]->size[1] == input.size[1]);
|
|
|
|
CV_Assert(inputs[i]->size[2] == input.size[2] && inputs[i]->size[3] == input.size[3]);
|
|
|
|
}
|
|
|
|
|
|
|
|
Size outSize = Size(outputs[0].size[3], outputs[0].size[2]);
|
|
|
|
getConvPoolPaddings(Size(input.size[3], input.size[2]), outSize,
|
2017-09-12 20:56:51 +08:00
|
|
|
kernel, stride, padMode, dilation, pad);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
bool hasBias() const
|
|
|
|
{
|
|
|
|
return blobs.size() >= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
|
|
|
|
bool is1x1() const
|
|
|
|
{
|
|
|
|
return (kernel.height == 1 && kernel.width == 1) &&
|
|
|
|
(stride.height == 1 && stride.width == 1) &&
|
|
|
|
(dilation.height == 1 && dilation.width == 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
|
|
|
|
const std::vector<Mat*> &inputs,
|
|
|
|
const std::vector<Mat> &outputs,
|
|
|
|
int targetId) const
|
|
|
|
{
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
if (targetId != DNN_TARGET_CPU)
|
|
|
|
{
|
|
|
|
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci");
|
|
|
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
|
|
|
|
Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0];
|
|
|
|
|
|
|
|
int outW, outH, outC, outN;
|
|
|
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
|
|
|
|
|
|
|
|
if (outW == 1 || outH <= 2)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (is1x1() || outC <= 16)
|
|
|
|
top.reorder(x, c, y)
|
|
|
|
.split(y, yo, yi, 2)
|
|
|
|
.fuse(yo, n, tile)
|
|
|
|
.parallel(tile)
|
|
|
|
.unroll(yi)
|
|
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
|
|
else
|
|
|
|
top.reorder(x, c, y)
|
|
|
|
.split(y, yo, yi, 2)
|
|
|
|
.split(c, co, ci, 16)
|
|
|
|
.fuse(yo, co, tile).fuse(n, tile, tile)
|
|
|
|
.parallel(tile)
|
|
|
|
.unroll(yi)
|
|
|
|
.vectorize(x, outW >= 16 ? 16 : outW);
|
|
|
|
padded_input.compute_at(top, yi);
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2017-11-20 11:29:18 +08:00
|
|
|
|
|
|
|
#define IS_POWER_LAYER(layer) \
|
|
|
|
(!layer.empty() && !layer->type.compare("Power"))
|
2017-06-26 18:35:51 +08:00
|
|
|
//TODO: simultaneously convolution and bias addition for cache optimization
|
|
|
|
class ConvolutionLayerImpl : public BaseConvolutionLayerImpl
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
|
|
|
|
Mat weightsMat;
|
|
|
|
std::vector<float> biasvec;
|
|
|
|
std::vector<float> reluslope;
|
|
|
|
Ptr<ActivationLayer> activ;
|
|
|
|
Ptr<BatchNormLayer> bnorm;
|
2017-07-04 22:23:47 +08:00
|
|
|
Ptr<ScaleLayer> scaleLayer;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
Ptr<OCL4DNNConvSpatial<float> > convolutionOp;
|
|
|
|
std::vector<UMat> umat_blobs;
|
2017-08-29 15:48:19 +08:00
|
|
|
bool fusedBias;
|
|
|
|
bool newWeightAndBias;
|
|
|
|
bool newActiv;
|
|
|
|
ocl4dnnFusedActiv_t activType;
|
2017-11-20 11:29:18 +08:00
|
|
|
float power;
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
#endif
|
2017-08-29 15:48:19 +08:00
|
|
|
ConvolutionLayerImpl()
|
|
|
|
{
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
fusedBias = false;
|
|
|
|
newWeightAndBias = false;
|
|
|
|
newActiv = false;
|
|
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
2017-11-20 11:29:18 +08:00
|
|
|
power = 0.f;
|
2017-08-29 15:48:19 +08:00
|
|
|
#endif
|
|
|
|
}
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
|
|
|
|
{
|
|
|
|
Size out(outShape[3], outShape[2]);
|
|
|
|
int inpGroupCn = blobs[0].size[1];
|
|
|
|
int ksize = inpGroupCn * kernel.height * kernel.width;
|
|
|
|
return shape(out.area(), ksize);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const
|
|
|
|
{
|
|
|
|
CV_Assert(blobs.size() != 0);
|
|
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
|
|
|
|
CV_Assert(inputs.size() == (size_t)1);
|
|
|
|
|
|
|
|
internals.clear();
|
|
|
|
|
|
|
|
int inpCn = inputs[0][1];
|
|
|
|
int inpH = inputs[0][2];
|
|
|
|
int inpW = inputs[0][3];
|
|
|
|
|
|
|
|
int outCn = blobs[0].size[0];
|
|
|
|
Size out;
|
|
|
|
|
|
|
|
if (padMode.empty())
|
|
|
|
{
|
|
|
|
out.height = (inpH + 2 * pad.height - (dilation.height * (kernel.height - 1) + 1)) / stride.height + 1;
|
|
|
|
out.width = (inpW + 2 * pad.width - (dilation.width * (kernel.width - 1) + 1)) / stride.width + 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2017-09-12 20:56:51 +08:00
|
|
|
getConvPoolOutParams(Size(inpW, inpH), kernel, stride, padMode, dilation, out);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int ngroups = inpCn / blobs[0].size[1];
|
2017-08-28 22:37:09 +08:00
|
|
|
CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
int dims[] = {inputs[0][0], outCn, out.height, out.width};
|
|
|
|
outputs.resize(inputs.size(), shape(dims));
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-06-28 16:15:22 +08:00
|
|
|
bool setActivation(const Ptr<ActivationLayer>& layer)
|
|
|
|
{
|
|
|
|
activ = layer;
|
2017-06-29 21:45:17 +08:00
|
|
|
if (activ.empty())
|
|
|
|
reluslope.clear();
|
2017-08-29 15:48:19 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
newActiv = true;
|
|
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
|
2017-11-20 11:29:18 +08:00
|
|
|
|
|
|
|
if (preferableTarget == DNN_TARGET_OPENCL)
|
|
|
|
{
|
|
|
|
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
|
|
|
|
if (!activ_power.empty())
|
|
|
|
{
|
|
|
|
if (activ_power->scale != 1.f || activ_power->shift != 0.f)
|
|
|
|
newWeightAndBias = true;
|
|
|
|
|
|
|
|
if (activ_power->scale != 1.f)
|
|
|
|
weightsMat.release();
|
|
|
|
|
|
|
|
power = activ_power->power;
|
|
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_POWER;
|
|
|
|
}
|
|
|
|
}
|
2017-08-29 15:48:19 +08:00
|
|
|
#endif
|
2017-06-28 16:15:22 +08:00
|
|
|
return !activ.empty();
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
bool setBatchNorm(const Ptr<BatchNormLayer>& layer )
|
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
// for now the scale layer followed by the batch norm cannot be fused, only vice versa.
|
|
|
|
if( !scaleLayer.empty() )
|
|
|
|
return false;
|
2017-06-26 18:35:51 +08:00
|
|
|
bnorm = layer;
|
|
|
|
// we will need to re-compute the weights with the batch
|
|
|
|
// norm coefficients taken into account
|
|
|
|
weightsMat.release();
|
2017-08-29 15:48:19 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
newWeightAndBias = true;
|
|
|
|
fusedBias = false;
|
|
|
|
#endif
|
2017-06-28 16:15:22 +08:00
|
|
|
return !bnorm.empty();
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
bool setScale(const Ptr<ScaleLayer>& layer)
|
|
|
|
{
|
|
|
|
scaleLayer = layer;
|
|
|
|
// we will need to re-compute the weights with the scaling
|
|
|
|
// coefficients taken into account
|
|
|
|
weightsMat.release();
|
2017-08-29 15:48:19 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
newWeightAndBias = true;
|
|
|
|
fusedBias = false;
|
|
|
|
#endif
|
2017-07-04 22:23:47 +08:00
|
|
|
return !scaleLayer.empty();
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
|
|
|
|
{
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
|
|
|
|
const int inpCn = inputBuffer.channels();
|
|
|
|
const int outCn = blobs[0].size[0];
|
|
|
|
const int inpGroupCn = blobs[0].size[1];
|
|
|
|
const int group = inpCn / inpGroupCn;
|
|
|
|
const int outGroupCn = outCn / group;
|
|
|
|
|
|
|
|
Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]);
|
|
|
|
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
|
|
|
if (pad.width || pad.height)
|
|
|
|
{
|
|
|
|
Halide::Func bounded =
|
|
|
|
Halide::BoundaryConditions::constant_exterior(inputBuffer, 0);
|
|
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
padded_input(x, y, c, n) = inputBuffer(x, y, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
2017-09-27 23:58:50 +08:00
|
|
|
Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width;
|
|
|
|
Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height;
|
2017-06-26 18:35:51 +08:00
|
|
|
Halide::Expr kc = r.z;
|
2017-09-27 23:58:50 +08:00
|
|
|
for (int i = 1; i < group; ++i)
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-09-27 23:58:50 +08:00
|
|
|
kc = select(c < outGroupCn * i, kc, inpGroupCn * i + r.z);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) *
|
|
|
|
weights(r.x, r.y, r.z, c));
|
|
|
|
if (hasBias())
|
|
|
|
{
|
|
|
|
Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn});
|
|
|
|
topExpr += bias(c);
|
|
|
|
}
|
|
|
|
top(x, y, c, n) = topExpr;
|
|
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
|
|
|
class ParallelConv : public cv::ParallelLoopBody
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 };
|
|
|
|
|
|
|
|
const Mat* input_;
|
|
|
|
const Mat* weights_;
|
|
|
|
Mat* output_;
|
|
|
|
int outShape[4];
|
|
|
|
Size kernel_, pad_, stride_, dilation_;
|
|
|
|
int ngroups_, nstripes_;
|
|
|
|
std::vector<int> ofstab_;
|
|
|
|
const std::vector<float>* biasvec_;
|
|
|
|
const std::vector<float>* reluslope_;
|
|
|
|
const ActivationLayer* activ_;
|
|
|
|
bool is1x1_;
|
2017-07-07 02:36:59 +08:00
|
|
|
bool useAVX;
|
2017-06-26 18:35:51 +08:00
|
|
|
bool useAVX2;
|
|
|
|
|
2017-06-28 21:26:55 +08:00
|
|
|
ParallelConv()
|
|
|
|
: input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
|
2017-07-07 02:36:59 +08:00
|
|
|
biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false)
|
2017-06-28 21:26:55 +08:00
|
|
|
{}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
static void run( const Mat& input, Mat& output, const Mat& weights,
|
|
|
|
const std::vector<float>& biasvec,
|
|
|
|
const std::vector<float>& reluslope,
|
|
|
|
Size kernel, Size pad, Size stride, Size dilation,
|
2017-06-28 16:15:22 +08:00
|
|
|
const ActivationLayer* activ, int ngroups, int nstripes )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-10-05 18:04:22 +08:00
|
|
|
CV_Assert( input.dims == 4 && output.dims == 4,
|
|
|
|
input.size[0] == output.size[0],
|
|
|
|
weights.rows == output.size[1],
|
|
|
|
weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height,
|
|
|
|
input.type() == output.type(),
|
|
|
|
input.type() == weights.type(),
|
|
|
|
input.type() == CV_32F,
|
|
|
|
input.isContinuous(),
|
|
|
|
output.isContinuous(),
|
2017-06-26 18:35:51 +08:00
|
|
|
biasvec.size() == (size_t)output.size[1]+2);
|
|
|
|
ParallelConv p;
|
|
|
|
|
|
|
|
p.input_ = &input;
|
|
|
|
p.weights_ = &weights;
|
|
|
|
p.output_ = &output;
|
|
|
|
for( int i = 0; i < 4; i++ ) p.outShape[i] = output.size[i];
|
|
|
|
p.outShape[1] /= ngroups;
|
|
|
|
p.kernel_ = kernel; p.pad_ = pad; p.stride_ = stride; p.dilation_ = dilation;
|
|
|
|
p.ngroups_ = ngroups;
|
|
|
|
p.nstripes_ = nstripes;
|
|
|
|
|
|
|
|
int inpCnAll = input.size[1], width = input.size[3], height = input.size[2];
|
|
|
|
int inpCn = inpCnAll / ngroups;
|
|
|
|
p.is1x1_ = kernel == Size(0,0) && pad == Size(0, 0);
|
2017-07-07 02:36:59 +08:00
|
|
|
p.useAVX = checkHardwareSupport(CPU_AVX);
|
2017-06-28 16:15:22 +08:00
|
|
|
p.useAVX2 = checkHardwareSupport(CPU_AVX2);
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
int ncn = std::min(inpCn, (int)BLK_SIZE_CN);
|
|
|
|
p.ofstab_.resize(kernel.width*kernel.height*ncn);
|
|
|
|
int* ofstab = &p.ofstab_[0];
|
|
|
|
|
|
|
|
for( int k = 0; k < ncn; k++ )
|
|
|
|
for( int k_r = 0; k_r < kernel.height; k_r++ )
|
|
|
|
for( int k_c = 0; k_c < kernel.width; k_c++ )
|
|
|
|
ofstab[(k*kernel.height + k_r)*kernel.width + k_c] =
|
|
|
|
(k*height + k_r*dilation.height)*width + k_c*dilation.width;
|
|
|
|
|
|
|
|
p.biasvec_ = &biasvec;
|
|
|
|
p.reluslope_ = &reluslope;
|
|
|
|
p.activ_ = p.reluslope_->empty() ? activ : 0;
|
|
|
|
|
|
|
|
parallel_for_(Range(0, nstripes), p, nstripes);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void operator ()(const Range &r0) const
|
|
|
|
{
|
|
|
|
const int valign = ConvolutionLayerImpl::VEC_ALIGN;
|
|
|
|
int ngroups = ngroups_, batchSize = input_->size[0]*ngroups;
|
|
|
|
int outW = output_->size[3], outH = output_->size[2], outCn = output_->size[1]/ngroups;
|
|
|
|
int width = input_->size[3], height = input_->size[2], inpCn = input_->size[1]/ngroups;
|
|
|
|
int nstripes = nstripes_;
|
|
|
|
int kernel_w = kernel_.width, kernel_h = kernel_.height;
|
|
|
|
int pad_w = pad_.width, pad_h = pad_.height;
|
|
|
|
int stride_w = stride_.width, stride_h = stride_.height;
|
|
|
|
int dilation_w = dilation_.width, dilation_h = dilation_.height;
|
|
|
|
int karea = kernel_w*kernel_h;
|
|
|
|
int i, j, k;
|
|
|
|
size_t inpPlaneSize = width*height;
|
|
|
|
size_t outPlaneSize = outW*outH;
|
|
|
|
bool is1x1 = is1x1_;
|
|
|
|
|
|
|
|
int stripesPerSample;
|
|
|
|
size_t stripeSize;
|
|
|
|
Range r = r0;
|
|
|
|
|
|
|
|
if( nstripes >= batchSize*2 )
|
|
|
|
{
|
|
|
|
stripesPerSample = nstripes/batchSize;
|
|
|
|
stripeSize = alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign);
|
|
|
|
stripeSize = std::min(stripeSize, outPlaneSize);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
stripesPerSample = 1;
|
|
|
|
int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1);
|
|
|
|
r.start *= samplesPerStripe;
|
|
|
|
r.end *= samplesPerStripe;
|
|
|
|
nstripes *= samplesPerStripe;
|
|
|
|
stripeSize = outPlaneSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float* data_inp0_ = input_->ptr<float>();
|
|
|
|
const int* ofstab = &ofstab_[0];
|
|
|
|
const float* wptr_orig_ = weights_->ptr<float>();
|
|
|
|
size_t wstep = weights_->step1();
|
|
|
|
const float* biasptr_ = &biasvec_->at(0);
|
|
|
|
const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0);
|
|
|
|
float* data_out0_ = output_->ptr<float>();
|
|
|
|
size_t rowbufsz = (size_t)karea*BLK_SIZE_CN*BLK_SIZE;
|
|
|
|
AutoBuffer<float> rowbuf0_(rowbufsz + valign);
|
|
|
|
float* rowbuf0 = alignPtr((float*)rowbuf0_, (int)(valign*sizeof(float)));
|
|
|
|
|
|
|
|
// we clear the buffer once; ultimately, it lets us to avoid
|
|
|
|
// tail processing after running the unrolled/vectorized loop.
|
|
|
|
// the main idea is to make sure that the tail (a.k.a. padding) of each row
|
|
|
|
// (i.e. the elements with indices between vsz=karea*ncn and vsz_a)
|
|
|
|
// does not contain NaNs or Infs. Because the padding in the weights
|
|
|
|
// matrix is explicitly initialized with 0's, we handle all other
|
|
|
|
// cases nicely, i.e. we can skip expliciting re-initialization
|
|
|
|
// of the padding - we just retain elements from the previous iteration
|
|
|
|
// of the loop over channels (cn0).
|
|
|
|
memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) );
|
|
|
|
|
|
|
|
for( int stripe = r.start; stripe < r.end; stripe++ )
|
|
|
|
{
|
|
|
|
int subsampleIdx = stripe/stripesPerSample;
|
|
|
|
if( subsampleIdx >= batchSize )
|
|
|
|
break;
|
|
|
|
int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize);
|
|
|
|
int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize);
|
|
|
|
const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn;
|
|
|
|
float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn;
|
|
|
|
int startOutCn = (subsampleIdx % ngroups)*outCn;
|
|
|
|
const float* wptr_orig = wptr_orig_ + wstep*startOutCn;
|
|
|
|
const float* biasptr = biasptr_ + startOutCn;
|
|
|
|
|
|
|
|
for( int cn0 = 0; cn0 < inpCn; cn0 += BLK_SIZE_CN )
|
|
|
|
{
|
|
|
|
int cn1 = std::min(cn0 + BLK_SIZE_CN, inpCn);
|
|
|
|
int ncn = cn1 - cn0, vsz = karea*ncn;
|
|
|
|
int vsz_a = (int)alignSize(vsz, valign);
|
|
|
|
const float* wptr = wptr_orig + cn0*karea;
|
|
|
|
// we apply [Channels][P]ReLU (if any) during the final pass only.
|
|
|
|
const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0;
|
|
|
|
|
|
|
|
for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += BLK_SIZE )
|
|
|
|
{
|
|
|
|
int ofs, ofs1 = std::min(ofs0 + BLK_SIZE, stripeEnd);
|
2017-06-28 16:15:22 +08:00
|
|
|
int out_i = ofs0 / outW;
|
|
|
|
int out_j = ofs0 - out_i * outW;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
// do im2row for a part of input tensor
|
2017-06-28 16:15:22 +08:00
|
|
|
float* rowbuf = rowbuf0;
|
|
|
|
for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 16:15:22 +08:00
|
|
|
int delta = std::min(ofs1 - ofs, outW - out_j);
|
|
|
|
int out_j1 = out_j + delta;
|
|
|
|
int in_i = out_i * stride_h - pad_h;
|
|
|
|
int in_j = out_j * stride_w - pad_w;
|
|
|
|
const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j;
|
|
|
|
ofs += delta;
|
|
|
|
|
|
|
|
// do im2row for a part of input tensor
|
|
|
|
if( is1x1 )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 16:15:22 +08:00
|
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
|
|
|
for( k = 0; k < vsz; k++ )
|
2017-06-28 16:15:22 +08:00
|
|
|
rowbuf[k] = imgptr[k*inpPlaneSize];
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
2017-06-28 16:15:22 +08:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h;
|
|
|
|
int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
|
|
|
|
int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
|
|
|
|
|
|
|
|
for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 16:15:22 +08:00
|
|
|
// this condition should be true for most of the tensor elements, i.e.
|
|
|
|
// most of the time the kernel aperture is inside the tensor X-Y plane.
|
|
|
|
if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
|
|
|
|
{
|
|
|
|
for( k = 0; k < vsz; k++ )
|
|
|
|
{
|
|
|
|
int k1 = ofstab[k];
|
|
|
|
float v0 = imgptr[k1];
|
|
|
|
float v1 = imgptr[k1 + stride_w];
|
|
|
|
rowbuf[k] = v0;
|
|
|
|
rowbuf[k+vsz_a] = v1;
|
|
|
|
}
|
|
|
|
out_j++;
|
|
|
|
rowbuf += vsz_a;
|
|
|
|
imgptr += stride_w;
|
|
|
|
in_j += stride_w;
|
|
|
|
}
|
|
|
|
else
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 16:15:22 +08:00
|
|
|
int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
|
|
|
|
int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
|
|
|
|
|
|
|
|
// here some non-continous sub-row of the row will not be
|
|
|
|
// filled from the tensor; we need to make sure that the uncovered
|
|
|
|
// elements are explicitly set to 0's. the easiest way is to
|
|
|
|
// set all the elements to 0's before the loop.
|
|
|
|
memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
|
|
|
|
for( k = 0; k < ncn; k++ )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 16:15:22 +08:00
|
|
|
for( i = i0; i < i1; i++ )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-06-28 16:15:22 +08:00
|
|
|
for( j = j0; j < j1; j++ )
|
|
|
|
{
|
|
|
|
int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w;
|
|
|
|
rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// now compute dot product of the weights
|
|
|
|
// and im2row-transformed part of the tensor
|
|
|
|
int bsz = ofs1 - ofs0;
|
2017-06-27 22:05:15 +08:00
|
|
|
#if CV_TRY_AVX2
|
2017-06-26 18:35:51 +08:00
|
|
|
if(useAVX2)
|
2017-07-13 23:42:36 +08:00
|
|
|
opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
2017-06-26 18:35:51 +08:00
|
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
|
|
else
|
2017-07-07 02:36:59 +08:00
|
|
|
#endif
|
|
|
|
#if CV_TRY_AVX
|
|
|
|
if(useAVX)
|
2017-07-13 23:42:36 +08:00
|
|
|
opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
|
2017-07-07 02:36:59 +08:00
|
|
|
outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
|
|
|
|
else
|
2017-06-26 18:35:51 +08:00
|
|
|
#endif
|
|
|
|
for( int i = 0; i < outCn; i += 2 )
|
|
|
|
{
|
|
|
|
const float* wptr0 = wptr + i*wstep;
|
|
|
|
const float* wptr1 = wptr0 + wstep;
|
|
|
|
float* outptr0 = data_out0 + ofs0 + i*outPlaneSize;
|
|
|
|
float* outptr1 = outptr0 + outPlaneSize;
|
|
|
|
float bias0 = biasptr[i], bias1 = biasptr[i+1];
|
|
|
|
float r0 = 1.f, r1 = 1.f;
|
|
|
|
|
|
|
|
if( i+1 >= outCn )
|
|
|
|
{
|
|
|
|
wptr1 = wptr0;
|
|
|
|
outptr1 = outptr0;
|
|
|
|
bias1 = bias0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( relu )
|
|
|
|
{
|
|
|
|
r0 = relu[i];
|
|
|
|
r1 = relu[i+1];
|
|
|
|
}
|
|
|
|
|
|
|
|
int j = 0;
|
|
|
|
#if CV_SIMD128
|
|
|
|
v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32();
|
|
|
|
|
|
|
|
for( ; j <= bsz - 4; j += 4 )
|
|
|
|
{
|
|
|
|
const float* rptr = rowbuf0 + j*vsz_a;
|
|
|
|
v_float32x4 s0, s1;
|
|
|
|
|
|
|
|
if( cn0 == 0 )
|
|
|
|
{
|
|
|
|
s0 = v_setall_f32(bias0);
|
|
|
|
s1 = v_setall_f32(bias1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
s0 = v_load(outptr0 + j);
|
|
|
|
s1 = v_load(outptr1 + j);
|
|
|
|
}
|
|
|
|
|
|
|
|
v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(),
|
|
|
|
vs02 = v_setzero_f32(), vs03 = v_setzero_f32(),
|
|
|
|
vs10 = v_setzero_f32(), vs11 = v_setzero_f32(),
|
|
|
|
vs12 = v_setzero_f32(), vs13 = v_setzero_f32();
|
|
|
|
for( k = 0; k < vsz; k += 4, rptr += 4 )
|
|
|
|
{
|
|
|
|
v_float32x4 w0 = v_load_aligned(wptr0 + k), w1 = v_load_aligned(wptr1 + k);
|
|
|
|
v_float32x4 r0 = v_load_aligned(rptr), r1 = v_load_aligned(rptr + vsz_a),
|
|
|
|
r2 = v_load_aligned(rptr + vsz_a*2), r3 = v_load_aligned(rptr + vsz_a*3);
|
|
|
|
|
|
|
|
vs00 += w0*r0;
|
|
|
|
vs01 += w0*r1;
|
|
|
|
vs02 += w0*r2;
|
|
|
|
vs03 += w0*r3;
|
|
|
|
|
|
|
|
vs10 += w1*r0;
|
|
|
|
vs11 += w1*r1;
|
|
|
|
vs12 += w1*r2;
|
|
|
|
vs13 += w1*r3;
|
|
|
|
}
|
|
|
|
s0 += v_reduce_sum4(vs00, vs01, vs02, vs03);
|
|
|
|
s1 += v_reduce_sum4(vs10, vs11, vs12, vs13);
|
|
|
|
if( relu )
|
|
|
|
{
|
|
|
|
s0 = v_select(s0 > z, s0, s0*vr0);
|
|
|
|
s1 = v_select(s1 > z, s1, s1*vr1);
|
|
|
|
}
|
|
|
|
|
|
|
|
v_store(outptr0 + j, s0);
|
|
|
|
v_store(outptr1 + j, s1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
for( ; j < bsz; j++ )
|
|
|
|
{
|
|
|
|
const float* rptr = rowbuf0 + j*vsz_a;
|
|
|
|
float s00, s10;
|
|
|
|
|
|
|
|
if( cn0 == 0 )
|
|
|
|
{
|
|
|
|
s00 = bias0;
|
|
|
|
s10 = bias1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
s00 = outptr0[j];
|
|
|
|
s10 = outptr1[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
for( k = 0; k < vsz; k++ )
|
|
|
|
{
|
|
|
|
float r0 = rptr[k];
|
|
|
|
s00 += wptr0[k]*r0;
|
|
|
|
s10 += wptr1[k]*r0;
|
|
|
|
}
|
|
|
|
if( relu )
|
|
|
|
{
|
|
|
|
s00 = s00 > 0.f ? s00 : s00*r0;
|
|
|
|
s10 = s10 > 0.f ? s10 : s10*r1;
|
|
|
|
}
|
|
|
|
|
|
|
|
outptr0[j] = s00;
|
|
|
|
outptr1[j] = s10;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( activ_ )
|
|
|
|
activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart,
|
|
|
|
(int)(stripeEnd - stripeStart),
|
|
|
|
outPlaneSize, startOutCn, startOutCn + outCn);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
#ifdef HAVE_OPENCL
|
2017-11-09 12:57:37 +08:00
|
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
{
|
2017-11-09 12:57:37 +08:00
|
|
|
std::vector<UMat> inputs;
|
|
|
|
std::vector<UMat> outputs;
|
|
|
|
|
|
|
|
inps.getUMatVector(inputs);
|
|
|
|
outs.getUMatVector(outputs);
|
|
|
|
|
|
|
|
int group = inputs[0].size[1] / umat_blobs[0].size[1];
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
|
|
|
|
if (convolutionOp.empty())
|
|
|
|
{
|
|
|
|
OCL4DNNConvConfig config;
|
2017-11-09 12:57:37 +08:00
|
|
|
config.in_shape = shape(inputs[0]);
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
config.out_shape = shape(outputs[0]);
|
|
|
|
config.kernel = kernel;
|
|
|
|
config.pad = pad;
|
|
|
|
config.stride = stride;
|
|
|
|
config.dilation = dilation;
|
|
|
|
config.group = group;
|
|
|
|
config.bias_term = (hasBias()) ? true : false;
|
|
|
|
|
|
|
|
convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
|
|
|
|
}
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
int k, outCn = umat_blobs[0].size[0];
|
|
|
|
if( weightsMat.empty() )
|
|
|
|
{
|
|
|
|
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
|
|
|
|
// use vectorized (i.e. with intrinsics) loops without tail processing
|
|
|
|
Mat wm = blobs[0].reshape(1, outCn).clone();
|
|
|
|
if( wm.step1() % VEC_ALIGN != 0 )
|
|
|
|
{
|
|
|
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
|
|
|
Mat wm_buffer = Mat(outCn, newcols, wm.type());
|
|
|
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
|
|
|
|
wm_padding.setTo(Scalar::all(0.));
|
|
|
|
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
|
|
|
|
wm.copyTo(wm_aligned);
|
|
|
|
wm = wm_aligned;
|
|
|
|
}
|
|
|
|
weightsMat = wm;
|
|
|
|
|
|
|
|
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
|
|
|
|
biasvec.resize(outCn+2);
|
|
|
|
if( biasMat.empty() )
|
|
|
|
{
|
|
|
|
for( k = 0; k < outCn; k++ )
|
|
|
|
biasvec[k] = 0.f;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( k = 0; k < outCn; k++ )
|
|
|
|
biasvec[k] = biasMat.at<float>(k);
|
|
|
|
}
|
|
|
|
|
2017-11-20 11:29:18 +08:00
|
|
|
if( !bnorm.empty() || !scaleLayer.empty() || IS_POWER_LAYER(activ))
|
2017-11-09 12:57:37 +08:00
|
|
|
{
|
|
|
|
Mat scale, shift, scale2, shift2;
|
|
|
|
const float *scaleptr = 0, *shiftptr = 0;
|
|
|
|
const float *scaleptr2 = 0, *shiftptr2 = 0;
|
2017-11-20 11:29:18 +08:00
|
|
|
float a = 1.f, b = 0.f;
|
2017-11-09 12:57:37 +08:00
|
|
|
|
|
|
|
if( !bnorm.empty() )
|
|
|
|
{
|
|
|
|
bnorm->getScaleShift(scale, shift);
|
|
|
|
CV_Assert( scale.isContinuous() && shift.isContinuous() &&
|
|
|
|
scale.type() == CV_32F && shift.type() == CV_32F &&
|
|
|
|
scale.total() == (size_t)outCn &&
|
|
|
|
shift.total() == (size_t)outCn );
|
|
|
|
scaleptr = scale.ptr<float>();
|
|
|
|
shiftptr = shift.ptr<float>();
|
|
|
|
}
|
|
|
|
if( !scaleLayer.empty() )
|
|
|
|
{
|
|
|
|
scale2 = scaleLayer->blobs[0];
|
|
|
|
CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F &&
|
|
|
|
scale2.total() == (size_t)outCn );
|
|
|
|
scaleptr2 = scale2.ptr<float>();
|
|
|
|
if( scaleLayer->hasBias )
|
|
|
|
{
|
|
|
|
shift2 = scaleLayer->blobs[1];
|
|
|
|
CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F &&
|
|
|
|
shift2.total() == (size_t)outCn );
|
|
|
|
shiftptr2 = shift2.ptr<float>();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-11-20 11:29:18 +08:00
|
|
|
if( IS_POWER_LAYER(activ) )
|
|
|
|
{
|
|
|
|
Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
|
|
|
|
a = activ_power->scale;
|
|
|
|
b = activ_power->shift;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (shiftptr || shiftptr2 || b != 0.f)
|
2017-11-09 12:57:37 +08:00
|
|
|
fusedBias = true;
|
|
|
|
|
|
|
|
for( int i = 0; i < outCn; i++ )
|
|
|
|
{
|
|
|
|
float s1 = scaleptr ? scaleptr[i] : 1.f;
|
|
|
|
float delta1 = shiftptr ? shiftptr[i] : 0.f;
|
|
|
|
float s2 = scaleptr2 ? scaleptr2[i] : 1.f;
|
|
|
|
float delta2 = shiftptr2 ? shiftptr2[i] : 0.f;
|
|
|
|
float* w_i = weightsMat.ptr<float>(i);
|
|
|
|
int j, wcols = weightsMat.cols;
|
|
|
|
|
|
|
|
for( j = 0; j < wcols; j++ )
|
2017-11-20 11:29:18 +08:00
|
|
|
w_i[j] *= (s1*s2*a);
|
2017-11-09 12:57:37 +08:00
|
|
|
|
2017-11-20 11:29:18 +08:00
|
|
|
biasvec[i] = biasvec[i]*(s1*s2*a) + (delta1*s2*a + delta2*a + b);
|
2017-11-09 12:57:37 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
reluslope.clear();
|
|
|
|
if( activ )
|
|
|
|
{
|
|
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
|
|
if( !activ_relu.empty() )
|
|
|
|
{
|
|
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
|
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_RELU;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
|
|
if( !activ_chprelu.empty() )
|
|
|
|
{
|
|
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
|
|
const float* mdata = m.ptr<float>();
|
|
|
|
reluslope.resize(outCn+2);
|
|
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
|
|
activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-08-29 15:48:19 +08:00
|
|
|
if ( newWeightAndBias )
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
{
|
2017-08-29 15:48:19 +08:00
|
|
|
weightsMat.copyTo(umat_blobs[0]);
|
|
|
|
if ( fusedBias )
|
|
|
|
{
|
|
|
|
if ( umat_blobs.size() < 2 )
|
|
|
|
umat_blobs.resize(2);
|
|
|
|
umat_blobs[1] = UMat(biasvec, true);
|
|
|
|
}
|
|
|
|
convolutionOp->setBias(fusedBias || hasBias());
|
|
|
|
newWeightAndBias = false;
|
|
|
|
}
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
|
2017-08-29 15:48:19 +08:00
|
|
|
if ( newActiv )
|
|
|
|
{
|
|
|
|
if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU )
|
|
|
|
{
|
|
|
|
CV_Assert(!reluslope.empty());
|
|
|
|
convolutionOp->setActivReLU(true, reluslope[0]);
|
|
|
|
}
|
|
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU)
|
|
|
|
{
|
|
|
|
CV_Assert(!reluslope.empty());
|
|
|
|
convolutionOp->setActivPReLU(true, reluslope);
|
|
|
|
}
|
2017-11-20 11:29:18 +08:00
|
|
|
else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER)
|
|
|
|
{
|
|
|
|
convolutionOp->setActivPower(true, power);
|
|
|
|
}
|
2017-08-29 15:48:19 +08:00
|
|
|
else
|
|
|
|
{
|
|
|
|
convolutionOp->setActivReLU(false, 0);
|
|
|
|
convolutionOp->setActivPReLU(false, reluslope);
|
2017-11-20 11:29:18 +08:00
|
|
|
convolutionOp->setActivPower(false, 1.f);
|
2017-08-29 15:48:19 +08:00
|
|
|
}
|
|
|
|
newActiv = false;
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
}
|
2017-08-29 15:48:19 +08:00
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
UMat& inpMat = inputs[0];
|
|
|
|
UMat& outMat = outputs[0];
|
2017-08-29 15:48:19 +08:00
|
|
|
int batch_size = inpMat.size[0];
|
|
|
|
|
|
|
|
return convolutionOp->Forward(inpMat,
|
2017-11-20 11:29:18 +08:00
|
|
|
inputs.size() == 2 ? inputs[1] : UMat(),
|
2017-08-29 15:48:19 +08:00
|
|
|
umat_blobs[0],
|
|
|
|
(hasBias() || fusedBias) ? umat_blobs[1] : UMat(),
|
|
|
|
outMat,
|
|
|
|
batch_size);
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
|
|
|
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
|
|
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
|
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
/*printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
|
|
|
|
name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3],
|
|
|
|
kernel.width, kernel.height, pad.width, pad.height,
|
|
|
|
stride.width, stride.height, dilation.width, dilation.height);*/
|
|
|
|
CV_Assert(inputs.size() == (size_t)1 && inputs[0]->size[1] % blobs[0].size[1] == 0);
|
|
|
|
int ngroups = inputs[0]->size[1]/blobs[0].size[1];
|
|
|
|
CV_Assert(outputs[0].size[1] % ngroups == 0);
|
|
|
|
int k, outCn = blobs[0].size[0];
|
|
|
|
|
|
|
|
if( weightsMat.empty() )
|
|
|
|
{
|
|
|
|
// prepare weightsMat where each row is aligned and has enough zero padding on the right to
|
|
|
|
// use vectorized (i.e. with intrinsics) loops without tail processing
|
2017-06-28 22:05:56 +08:00
|
|
|
Mat wm = blobs[0].reshape(1, outCn).clone();
|
2017-06-26 18:35:51 +08:00
|
|
|
if( wm.step1() % VEC_ALIGN != 0 )
|
|
|
|
{
|
|
|
|
int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
|
|
|
|
Mat wm_buffer = Mat(outCn, newcols, wm.type());
|
|
|
|
Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
|
|
|
|
wm_padding.setTo(Scalar::all(0.));
|
|
|
|
Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
|
|
|
|
wm.copyTo(wm_aligned);
|
|
|
|
wm = wm_aligned;
|
|
|
|
}
|
|
|
|
weightsMat = wm;
|
|
|
|
|
|
|
|
Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
|
|
|
|
biasvec.resize(outCn+2);
|
|
|
|
if( biasMat.empty() )
|
|
|
|
{
|
|
|
|
for( k = 0; k < outCn; k++ )
|
|
|
|
biasvec[k] = 0.f;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( k = 0; k < outCn; k++ )
|
|
|
|
biasvec[k] = biasMat.at<float>(k);
|
|
|
|
}
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
if( !bnorm.empty() || !scaleLayer.empty() )
|
2017-06-26 18:35:51 +08:00
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
Mat scale, shift, scale2, shift2;
|
|
|
|
const float *scaleptr = 0, *shiftptr = 0;
|
|
|
|
const float *scaleptr2 = 0, *shiftptr2 = 0;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
if( !bnorm.empty() )
|
|
|
|
{
|
|
|
|
bnorm->getScaleShift(scale, shift);
|
|
|
|
CV_Assert( scale.isContinuous() && shift.isContinuous() &&
|
|
|
|
scale.type() == CV_32F && shift.type() == CV_32F &&
|
|
|
|
scale.total() == (size_t)outCn &&
|
|
|
|
shift.total() == (size_t)outCn );
|
|
|
|
scaleptr = scale.ptr<float>();
|
|
|
|
shiftptr = shift.ptr<float>();
|
|
|
|
}
|
|
|
|
if( !scaleLayer.empty() )
|
|
|
|
{
|
|
|
|
scale2 = scaleLayer->blobs[0];
|
|
|
|
CV_Assert( scale2.isContinuous() && scale2.type() == CV_32F &&
|
|
|
|
scale2.total() == (size_t)outCn );
|
|
|
|
scaleptr2 = scale2.ptr<float>();
|
|
|
|
if( scaleLayer->hasBias )
|
|
|
|
{
|
|
|
|
shift2 = scaleLayer->blobs[1];
|
|
|
|
CV_Assert( shift2.isContinuous() && shift2.type() == CV_32F &&
|
|
|
|
shift2.total() == (size_t)outCn );
|
|
|
|
shiftptr2 = shift2.ptr<float>();
|
|
|
|
}
|
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
for( int i = 0; i < outCn; i++ )
|
|
|
|
{
|
2017-07-04 22:23:47 +08:00
|
|
|
float s1 = scaleptr ? scaleptr[i] : 1.f;
|
|
|
|
float delta1 = shiftptr ? shiftptr[i] : 0.f;
|
|
|
|
float s2 = scaleptr2 ? scaleptr2[i] : 1.f;
|
|
|
|
float delta2 = shiftptr2 ? shiftptr2[i] : 0.f;
|
2017-06-26 18:35:51 +08:00
|
|
|
float* w_i = weightsMat.ptr<float>(i);
|
|
|
|
int j, wcols = weightsMat.cols;
|
|
|
|
|
|
|
|
for( j = 0; j < wcols; j++ )
|
2017-07-04 22:23:47 +08:00
|
|
|
w_i[j] *= (s1*s2);
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
biasvec[i] = biasvec[i]*(s1*s2) + (delta1*s2 + delta2);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
|
|
|
|
}
|
|
|
|
|
2017-07-04 22:23:47 +08:00
|
|
|
reluslope.clear();
|
2017-06-26 18:35:51 +08:00
|
|
|
if( activ )
|
|
|
|
{
|
|
|
|
Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
|
|
|
|
if( !activ_relu.empty() )
|
2017-08-29 15:48:19 +08:00
|
|
|
{
|
2017-06-26 18:35:51 +08:00
|
|
|
reluslope.assign(outCn+2, activ_relu->negativeSlope);
|
2017-08-29 15:48:19 +08:00
|
|
|
}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
|
|
|
|
if( !activ_chprelu.empty() )
|
|
|
|
{
|
|
|
|
const Mat& m = activ_chprelu->blobs[0];
|
|
|
|
CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
|
|
|
|
const float* mdata = m.ptr<float>();
|
|
|
|
reluslope.resize(outCn+2);
|
|
|
|
std::copy(mdata, mdata + outCn, reluslope.begin());
|
|
|
|
reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int nstripes = std::max(getNumThreads(), 1);
|
|
|
|
|
|
|
|
ParallelConv::run(*inputs[0], outputs[0], weightsMat, biasvec, reluslope,
|
2017-06-28 16:15:22 +08:00
|
|
|
kernel, pad, stride, dilation, activ.get(), ngroups, nstripes);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
|
|
const std::vector<MatShape> &outputs) const
|
|
|
|
{
|
|
|
|
CV_Assert(inputs.size() == outputs.size());
|
|
|
|
|
|
|
|
int64 flops = 0;
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
flops += total(outputs[i])*(2*kernel.area()*inputs[i][1] + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return flops;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class DeConvolutionLayerImpl : public BaseConvolutionLayerImpl
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
Mat weightsMat, biasesMat;
|
|
|
|
|
|
|
|
MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const
|
|
|
|
{
|
|
|
|
int inpCn = inpShape[1];
|
|
|
|
int inpH = inpShape[2];
|
|
|
|
int inpW = inpShape[3];
|
|
|
|
int outCn = outShape[1];
|
2017-09-27 23:58:50 +08:00
|
|
|
int ngroups = inpCn / blobs[0].size[0];
|
2017-06-26 18:35:51 +08:00
|
|
|
int outGroupCn = outCn / ngroups;
|
|
|
|
int ksize = outGroupCn * kernel.height * kernel.width;
|
|
|
|
return shape(ksize, inpH * inpW);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const
|
|
|
|
{
|
2017-09-27 23:58:50 +08:00
|
|
|
CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput);
|
2017-06-26 18:35:51 +08:00
|
|
|
CV_Assert(inputs.size() != 0);
|
|
|
|
|
|
|
|
int inpCn = inputs[0][1];
|
|
|
|
int inpH = inputs[0][2];
|
|
|
|
int inpW = inputs[0][3];
|
|
|
|
|
|
|
|
int outH = stride.height * (inpH - 1) + kernel.height - 2 * pad.height + adjustPad.height;
|
|
|
|
int outW = stride.width * (inpW - 1) + kernel.width - 2 * pad.width + adjustPad.width;
|
2017-09-27 23:58:50 +08:00
|
|
|
int outCn = numOutput;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
2017-09-27 23:58:50 +08:00
|
|
|
CV_Assert(outCn % blobs[0].size[1] == 0);
|
|
|
|
int ngroups = outCn / blobs[0].size[1];
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
|
2017-09-27 23:58:50 +08:00
|
|
|
CV_Assert(blobs[0].size[0] == inpCn);
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
int dims[] = {inputs[0][0], outCn, outH, outW};
|
|
|
|
outputs.resize(inputs.size(), shape(dims));
|
|
|
|
|
|
|
|
internals.push_back(MatShape());
|
|
|
|
if (!is1x1())
|
|
|
|
internals[0] = computeColRowShape(inputs[0], outputs[0]);
|
|
|
|
|
|
|
|
if (hasBias())
|
|
|
|
internals.push_back(shape(1, outH*outW));
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
class MatMulInvoker : public ParallelLoopBody
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
|
|
|
|
{
|
|
|
|
a_ = &a;
|
|
|
|
b_ = &b;
|
|
|
|
c_ = &c;
|
|
|
|
nstripes_ = nstripes;
|
2017-07-07 02:36:59 +08:00
|
|
|
useAVX = checkHardwareSupport(CPU_AVX);
|
2017-06-28 16:15:22 +08:00
|
|
|
useAVX2 = checkHardwareSupport(CPU_AVX2);
|
2017-06-26 18:35:51 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void operator()(const Range& range_) const
|
|
|
|
{
|
|
|
|
int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
|
|
|
|
Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
|
|
|
|
int mmax = a_->rows;
|
|
|
|
int nmax = range.end - range.start;
|
|
|
|
int kmax = a_->cols;
|
|
|
|
int m, n, k;
|
|
|
|
const float* aptr = a_->ptr<float>();
|
|
|
|
const float* bptr = b_->ptr<float>() + range.start;
|
|
|
|
float* cptr = c_->ptr<float>() + range.start;
|
|
|
|
size_t astep = a_->step1();
|
|
|
|
size_t bstep = b_->step1();
|
|
|
|
size_t cstep = c_->step1();
|
|
|
|
|
2017-06-27 22:05:15 +08:00
|
|
|
#if CV_TRY_AVX2
|
2017-06-26 18:35:51 +08:00
|
|
|
if( useAVX2 )
|
2017-07-13 23:42:36 +08:00
|
|
|
opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
2017-06-26 18:35:51 +08:00
|
|
|
else
|
2017-07-07 02:36:59 +08:00
|
|
|
#endif
|
|
|
|
#if CV_TRY_AVX
|
|
|
|
if( useAVX )
|
2017-07-13 23:42:36 +08:00
|
|
|
opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
|
2017-07-07 02:36:59 +08:00
|
|
|
else
|
2017-06-26 18:35:51 +08:00
|
|
|
#endif
|
|
|
|
for( m = 0; m < mmax; m += 2 )
|
|
|
|
{
|
|
|
|
float* dst0 = cptr + cstep*m;
|
|
|
|
float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
|
|
|
|
const float* aptr0 = aptr + astep*m;
|
|
|
|
const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);
|
|
|
|
|
|
|
|
for( n = 0; n < nmax; n++ )
|
|
|
|
{
|
|
|
|
dst0[n] = 0.f;
|
|
|
|
dst1[n] = 0.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( k = 0; k < kmax; k += 4 )
|
|
|
|
{
|
|
|
|
float alpha00 = aptr0[k];
|
|
|
|
float alpha01 = aptr1[k];
|
|
|
|
float alpha10 = 0.f, alpha11 = 0.f;
|
|
|
|
float alpha20 = 0.f, alpha21 = 0.f;
|
|
|
|
float alpha30 = 0.f, alpha31 = 0.f;
|
|
|
|
const float* bptr0 = bptr + k*bstep;
|
|
|
|
const float* bptr1 = bptr0;
|
|
|
|
const float* bptr2 = bptr0;
|
|
|
|
const float* bptr3 = bptr0;
|
|
|
|
|
|
|
|
if( k+1 < kmax )
|
|
|
|
{
|
|
|
|
alpha10 = aptr0[k+1];
|
|
|
|
alpha11 = aptr1[k+1];
|
|
|
|
bptr1 = bptr0 + bstep;
|
|
|
|
if( k+2 < kmax )
|
|
|
|
{
|
|
|
|
alpha20 = aptr0[k+2];
|
|
|
|
alpha21 = aptr1[k+2];
|
|
|
|
bptr2 = bptr1 + bstep;
|
|
|
|
if( k+3 < kmax )
|
|
|
|
{
|
|
|
|
alpha30 = aptr0[k+3];
|
|
|
|
alpha31 = aptr1[k+3];
|
|
|
|
bptr3 = bptr2 + bstep;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
n = 0;
|
|
|
|
|
|
|
|
#if CV_SIMD128
|
|
|
|
v_float32x4 a00 = v_setall_f32(alpha00);
|
|
|
|
v_float32x4 a01 = v_setall_f32(alpha01);
|
|
|
|
v_float32x4 a10 = v_setall_f32(alpha10);
|
|
|
|
v_float32x4 a11 = v_setall_f32(alpha11);
|
|
|
|
v_float32x4 a20 = v_setall_f32(alpha20);
|
|
|
|
v_float32x4 a21 = v_setall_f32(alpha21);
|
|
|
|
v_float32x4 a30 = v_setall_f32(alpha30);
|
|
|
|
v_float32x4 a31 = v_setall_f32(alpha31);
|
|
|
|
|
|
|
|
for( ; n <= nmax - 4; n += 4 )
|
|
|
|
{
|
|
|
|
v_float32x4 b0 = v_load(bptr0 + n);
|
|
|
|
v_float32x4 b1 = v_load(bptr1 + n);
|
|
|
|
v_float32x4 b2 = v_load(bptr2 + n);
|
|
|
|
v_float32x4 b3 = v_load(bptr3 + n);
|
|
|
|
v_float32x4 d0 = v_load(dst0 + n);
|
|
|
|
v_float32x4 d1 = v_load(dst1 + n);
|
|
|
|
d0 += b0*a00;
|
|
|
|
d1 += b0*a01;
|
|
|
|
d0 += b1*a10;
|
|
|
|
d1 += b1*a11;
|
|
|
|
d0 += b2*a20;
|
|
|
|
d1 += b2*a21;
|
|
|
|
d0 += b3*a30;
|
|
|
|
d1 += b3*a31;
|
|
|
|
v_store(dst0 + n, d0);
|
|
|
|
v_store(dst1 + n, d1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for( ; n < nmax; n++ )
|
|
|
|
{
|
|
|
|
float b0 = bptr0[n], b1 = bptr1[n];
|
|
|
|
float b2 = bptr2[n], b3 = bptr3[n];
|
|
|
|
float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
|
|
|
|
float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
|
|
|
|
dst0[n] = d0;
|
|
|
|
dst1[n] = d1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const Mat *a_, *b_;
|
|
|
|
Mat* c_;
|
|
|
|
int nstripes_;
|
2017-07-07 02:36:59 +08:00
|
|
|
bool useAVX;
|
2017-06-26 18:35:51 +08:00
|
|
|
bool useAVX2;
|
|
|
|
};
|
|
|
|
|
|
|
|
class Col2ImInvoker : public cv::ParallelLoopBody
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
const float* data_col;
|
|
|
|
const float* biasvec;
|
|
|
|
int channels, height, width;
|
|
|
|
int kernel_h, kernel_w;
|
|
|
|
int pad_h, pad_w;
|
|
|
|
int stride_h, stride_w;
|
|
|
|
float* data_im;
|
|
|
|
int height_col, width_col;
|
|
|
|
int nstripes;
|
|
|
|
bool is1x1;
|
|
|
|
|
2017-06-28 21:26:55 +08:00
|
|
|
Col2ImInvoker()
|
|
|
|
: data_col(0), biasvec(0), channels(0), height(0), width(0),
|
|
|
|
kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
|
|
|
|
height_col(0), width_col(0), nstripes(0), is1x1(0)
|
|
|
|
{}
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
static void run(const float* data_col,
|
|
|
|
int channels, int height, int width,
|
|
|
|
int kernel_h, int kernel_w,
|
|
|
|
int pad_h, int pad_w,
|
|
|
|
int stride_h, int stride_w,
|
|
|
|
float* data_im,
|
|
|
|
const float* biasvec,
|
|
|
|
bool is1x1)
|
|
|
|
{
|
|
|
|
const int nstripes = getNumThreads();
|
|
|
|
|
|
|
|
Col2ImInvoker t;
|
|
|
|
t.data_col = data_col;
|
|
|
|
t.data_im = data_im;
|
|
|
|
t.channels = channels; t.height = height; t.width = width;
|
|
|
|
t.kernel_h = kernel_h; t.kernel_w = kernel_w;
|
|
|
|
t.pad_h = pad_h; t.pad_w = pad_w;
|
|
|
|
t.stride_h = stride_h; t.stride_w = stride_w;
|
|
|
|
t.height_col = (height + 2 * pad_h - kernel_h) / stride_h + 1;
|
|
|
|
t.width_col = (width + 2 * pad_w - kernel_w) / stride_w + 1;
|
|
|
|
t.nstripes = nstripes;
|
|
|
|
t.is1x1 = is1x1;
|
|
|
|
t.biasvec = biasvec;
|
|
|
|
|
|
|
|
parallel_for_(Range(0, nstripes), t, nstripes);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void operator ()(const Range &r) const
|
|
|
|
{
|
|
|
|
const float* data_col_ = data_col;
|
|
|
|
float* data_im_ = data_im;
|
|
|
|
int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
|
|
|
|
int coeff_w = (1 - stride_w * height_col * width_col);
|
|
|
|
size_t total = (size_t)channels * height * width;
|
|
|
|
size_t stripeSize = (total + nstripes - 1)/nstripes;
|
|
|
|
size_t startIndex = r.start*stripeSize;
|
|
|
|
size_t endIndex = std::min(r.end*stripeSize, total);
|
|
|
|
int w = (int)(startIndex % width + pad_w);
|
|
|
|
int h = (int)((startIndex / width) % height + pad_h);
|
|
|
|
int c = (int)(startIndex / (width * height));
|
|
|
|
int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
|
|
int h_col_end = std::min(h / stride_h + 1, height_col);
|
|
|
|
int plane_size_col = height_col * width_col;
|
|
|
|
int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
|
|
bool is1x1_ = is1x1;
|
|
|
|
const float* biasvec_ = biasvec;
|
|
|
|
|
|
|
|
for (size_t index = startIndex; index < endIndex; index++)
|
|
|
|
{
|
|
|
|
// compute the start and end of the output
|
|
|
|
int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
|
|
|
|
int w_col_end = std::min(w / stride_w + 1, width_col);
|
|
|
|
float val;
|
|
|
|
|
|
|
|
if( is1x1_ )
|
|
|
|
val = data_im_[index];
|
|
|
|
else
|
|
|
|
{
|
|
|
|
val = 0.f;
|
|
|
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
|
|
|
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
|
|
|
|
val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
data_im_[index] = val + biasvec_[c];
|
|
|
|
|
|
|
|
offset += plane_size_col;
|
|
|
|
if( ++w >= width + pad_w )
|
|
|
|
{
|
|
|
|
w = (int)((index + 1)% width + pad_w);
|
|
|
|
h = (int)(((index + 1) / width) % height + pad_h);
|
|
|
|
c = (int)((index + 1) / (width * height));
|
|
|
|
h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
|
|
|
|
h_col_end = std::min(h / stride_h + 1, height_col);
|
|
|
|
offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
void forward(std::vector<Mat *> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2017-09-27 23:58:50 +08:00
|
|
|
int outCn = numOutput;
|
2017-06-26 18:35:51 +08:00
|
|
|
int inpCn = inputs[0]->size[1];
|
|
|
|
bool is1x1flag = is1x1();
|
|
|
|
int nstripes = getNumThreads();
|
|
|
|
|
|
|
|
if( weightsMat.empty() )
|
|
|
|
{
|
|
|
|
transpose(blobs[0].reshape(1, inpCn), weightsMat);
|
|
|
|
biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
|
|
{
|
2017-09-27 23:58:50 +08:00
|
|
|
int ngroups = outCn / blobs[0].size[1];
|
|
|
|
int inpGroupCn = inpCn / ngroups;
|
|
|
|
int outGroupCn = blobs[0].size[1];
|
2017-06-26 18:35:51 +08:00
|
|
|
const Mat& inp = *inputs[ii];
|
|
|
|
Mat& out = outputs[ii];
|
|
|
|
int numImg = inp.size[0];
|
|
|
|
int outH = out.size[2], outW = out.size[3];
|
|
|
|
|
|
|
|
Mat convBlob = inputs[ii]->reshape(1, numImg*inpCn);
|
|
|
|
Mat decnBlob = out.reshape(1, numImg*outCn);
|
|
|
|
|
|
|
|
for (int n = 0; n < numImg; n++)
|
|
|
|
{
|
|
|
|
for (int g = 0; g < ngroups; g++)
|
|
|
|
{
|
|
|
|
Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn));
|
|
|
|
Mat &colMat = is1x1flag ? dstMat : internals[0];
|
|
|
|
|
|
|
|
Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
|
|
|
|
Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
|
|
|
|
Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
|
|
|
|
|
|
|
|
//gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
|
|
|
|
MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
|
|
|
|
parallel_for_(Range(0, nstripes), mminvoker, nstripes);
|
|
|
|
|
|
|
|
Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
|
|
|
|
kernel.height, kernel.width, pad.height, pad.width,
|
|
|
|
stride.height, stride.width, dstMat.ptr<float>(),
|
|
|
|
curBiasMat.ptr<float>(), is1x1flag);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
|
|
|
|
{
|
|
|
|
#ifdef HAVE_HALIDE
|
|
|
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
|
|
|
|
|
2017-09-27 23:58:50 +08:00
|
|
|
int inW, inH, inC, inN;
|
2017-06-26 18:35:51 +08:00
|
|
|
getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
|
2017-09-27 23:58:50 +08:00
|
|
|
const int outGroupCn = blobs[0].size[1];
|
|
|
|
const int group = numOutput / outGroupCn;
|
|
|
|
const int inpGroupCn = blobs[0].size[0] / group;
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
|
|
Halide::Func padded_input(name + "_constant_exterior");
|
2017-09-27 23:58:50 +08:00
|
|
|
auto weights = wrapToHalideBuffer(blobs[0]);
|
2017-06-26 18:35:51 +08:00
|
|
|
|
|
|
|
Halide::Func dilated_input("dilated_input");
|
|
|
|
dilated_input(x, y, c, n) = 0.0f;
|
|
|
|
Halide::RDom r1(0, inW, 0, inH);
|
|
|
|
dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) =
|
|
|
|
inputBuffer(r1.x, r1.y, c, n);
|
|
|
|
dilated_input.compute_root();
|
|
|
|
|
|
|
|
Halide::Func bounded =
|
|
|
|
Halide::BoundaryConditions::constant_exterior(dilated_input, 0,
|
|
|
|
0, (inW - 1) * stride.width + 1,
|
|
|
|
0, (inH - 1) * stride.height + 1,
|
|
|
|
0, inC, 0, inN);
|
|
|
|
padded_input(x, y, c, n) = bounded(x, y, c, n);
|
|
|
|
|
2017-09-27 23:58:50 +08:00
|
|
|
Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
|
|
|
|
Halide::Expr kx = x + pad.width - r.x;
|
|
|
|
Halide::Expr ky = y + pad.height - r.y;
|
|
|
|
Halide::Expr kInC = r.z;
|
|
|
|
Halide::Expr kOutC = c;
|
|
|
|
for (int i = 1; i < group; ++i)
|
|
|
|
{
|
|
|
|
kInC = select(c < outGroupCn * i, kInC, inpGroupCn * i + r.z);
|
|
|
|
kOutC = select(c < outGroupCn * i, kOutC, c - outGroupCn * i);
|
|
|
|
}
|
|
|
|
Halide::Expr topExpr = sum(padded_input(kx, ky, kInC, n) *
|
|
|
|
weights(r.x, r.y, kOutC, kInC));
|
2017-06-26 18:35:51 +08:00
|
|
|
if (hasBias())
|
|
|
|
{
|
2017-09-27 23:58:50 +08:00
|
|
|
auto bias = wrapToHalideBuffer(blobs[1], {numOutput});
|
2017-06-26 18:35:51 +08:00
|
|
|
topExpr += bias(c);
|
|
|
|
}
|
|
|
|
top(x, y, c, n) = topExpr;
|
|
|
|
return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
|
|
|
|
#endif // HAVE_HALIDE
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
|
|
const std::vector<MatShape> &outputs) const
|
|
|
|
{
|
|
|
|
CV_Assert(inputs.size() == outputs.size());
|
|
|
|
|
|
|
|
float flops = 0;
|
|
|
|
int outChannels = blobs[0].size[0];
|
|
|
|
|
|
|
|
for (int i = 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
flops += 2*outChannels*kernel.area()*total(inputs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return flops;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
//Convolution and Deconvolution
|
|
|
|
static void initConvDeconvLayerFromCaffe(Ptr<BaseConvolutionLayer> l, const LayerParams ¶ms)
|
|
|
|
{
|
|
|
|
l->setParamsFrom(params);
|
|
|
|
getConvolutionKernelParams(params, l->kernel.height, l->kernel.width, l->pad.height,
|
|
|
|
l->pad.width, l->stride.height, l->stride.width, l->dilation.height,
|
|
|
|
l->dilation.width, l->padMode);
|
|
|
|
|
2017-09-27 23:58:50 +08:00
|
|
|
l->numOutput = params.get<int>("num_output");
|
2017-06-26 18:35:51 +08:00
|
|
|
int ngroups = params.get<int>("group", 1);
|
|
|
|
|
|
|
|
l->adjustPad.height = params.get<int>("adj_h", 0);
|
|
|
|
l->adjustPad.width = params.get<int>("adj_w", 0);
|
|
|
|
|
2017-09-27 23:58:50 +08:00
|
|
|
CV_Assert(l->numOutput % ngroups == 0);
|
2017-06-26 18:35:51 +08:00
|
|
|
CV_Assert(l->adjustPad.width < l->stride.width &&
|
|
|
|
l->adjustPad.height < l->stride.height);
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams ¶ms)
|
|
|
|
{
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
ConvolutionLayerImpl* conv_ptr = new ConvolutionLayerImpl;
|
|
|
|
Ptr<BaseConvolutionLayer> l(conv_ptr);
|
2017-06-26 18:35:51 +08:00
|
|
|
initConvDeconvLayerFromCaffe(l, params);
|
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
|
|
|
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
size_t n = params.blobs.size();
|
|
|
|
conv_ptr->umat_blobs.resize(n);
|
|
|
|
for (int i = 0; i < n; i++)
|
|
|
|
conv_ptr->umat_blobs[i] = params.blobs[i].getUMat(ACCESS_READ);
|
|
|
|
#endif
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
return l;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams ¶ms)
|
|
|
|
{
|
|
|
|
Ptr<BaseConvolutionLayer> l(new DeConvolutionLayerImpl);
|
|
|
|
initConvDeconvLayerFromCaffe(l, params);
|
|
|
|
|
|
|
|
return l;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|