2020-08-25 18:06:09 +08:00
|
|
|
/*
|
|
|
|
* The copyright in this software is being made available under the 2-clauses
|
|
|
|
* BSD License, included below. This software may be subject to other third
|
|
|
|
* party and contributor rights, including patent rights, and no such rights
|
|
|
|
* are granted under this license.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
|
|
|
|
* Copyright (c) 2002-2014, Professor Benoit Macq
|
|
|
|
* Copyright (c) 2001-2003, David Janssens
|
|
|
|
* Copyright (c) 2002-2003, Yannick Verschueren
|
|
|
|
* Copyright (c) 2003-2007, Francois-Olivier Devaux
|
|
|
|
* Copyright (c) 2003-2014, Antonin Descampe
|
|
|
|
* Copyright (c) 2005, Herve Drolon, FreeImage Team
|
|
|
|
* Copyright (c) 2012, Carl Hetherington
|
|
|
|
* Copyright (c) 2017, IntoPIX SA <support@intopix.com>
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
|
|
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
#ifndef OPJ_T1_H
|
|
|
|
#define OPJ_T1_H
|
|
|
|
/**
|
|
|
|
@file t1.h
|
|
|
|
@brief Implementation of the tier-1 coding (coding of code-block coefficients) (T1)
|
|
|
|
|
|
|
|
The functions in T1.C have for goal to realize the tier-1 coding operation. The functions
|
|
|
|
in T1.C are used by some function in TCD.C.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/** @defgroup T1 T1 - Implementation of the tier-1 coding */
|
|
|
|
/*@{*/
|
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
#define T1_NMSEDEC_BITS 7
|
|
|
|
|
|
|
|
#define T1_NUMCTXS_ZC 9
|
|
|
|
#define T1_NUMCTXS_SC 5
|
|
|
|
#define T1_NUMCTXS_MAG 3
|
|
|
|
#define T1_NUMCTXS_AGG 1
|
|
|
|
#define T1_NUMCTXS_UNI 1
|
|
|
|
|
|
|
|
#define T1_CTXNO_ZC 0
|
|
|
|
#define T1_CTXNO_SC (T1_CTXNO_ZC+T1_NUMCTXS_ZC)
|
|
|
|
#define T1_CTXNO_MAG (T1_CTXNO_SC+T1_NUMCTXS_SC)
|
|
|
|
#define T1_CTXNO_AGG (T1_CTXNO_MAG+T1_NUMCTXS_MAG)
|
|
|
|
#define T1_CTXNO_UNI (T1_CTXNO_AGG+T1_NUMCTXS_AGG)
|
|
|
|
#define T1_NUMCTXS (T1_CTXNO_UNI+T1_NUMCTXS_UNI)
|
|
|
|
|
|
|
|
#define T1_NMSEDEC_FRACBITS (T1_NMSEDEC_BITS-1)
|
|
|
|
|
|
|
|
#define T1_TYPE_MQ 0 /**< Normal coding using entropy coder */
|
|
|
|
#define T1_TYPE_RAW 1 /**< No encoding the information is store under raw format in codestream (mode switch RAW)*/
|
|
|
|
|
|
|
|
/* BEGINNING of flags that apply to opj_flag_t */
|
|
|
|
/** We hold the state of individual data points for the T1 encoder using
|
|
|
|
* a single 32-bit flags word to hold the state of 4 data points. This corresponds
|
|
|
|
* to the 4-point-high columns that the data is processed in.
|
|
|
|
*
|
|
|
|
* These \#defines declare the layout of a 32-bit flags word.
|
|
|
|
*
|
|
|
|
* This is currently done for encoding only.
|
|
|
|
* The values must NOT be changed, otherwise this is going to break a lot of
|
|
|
|
* assumptions.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* SIGMA: significance state (3 cols x 6 rows)
|
|
|
|
* CHI: state for negative sample value (1 col x 6 rows)
|
|
|
|
* MU: state for visited in refinement pass (1 col x 4 rows)
|
|
|
|
* PI: state for visited in significance pass (1 col * 4 rows)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define T1_SIGMA_0 (1U << 0)
|
|
|
|
#define T1_SIGMA_1 (1U << 1)
|
|
|
|
#define T1_SIGMA_2 (1U << 2)
|
|
|
|
#define T1_SIGMA_3 (1U << 3)
|
|
|
|
#define T1_SIGMA_4 (1U << 4)
|
|
|
|
#define T1_SIGMA_5 (1U << 5)
|
|
|
|
#define T1_SIGMA_6 (1U << 6)
|
|
|
|
#define T1_SIGMA_7 (1U << 7)
|
|
|
|
#define T1_SIGMA_8 (1U << 8)
|
|
|
|
#define T1_SIGMA_9 (1U << 9)
|
|
|
|
#define T1_SIGMA_10 (1U << 10)
|
|
|
|
#define T1_SIGMA_11 (1U << 11)
|
|
|
|
#define T1_SIGMA_12 (1U << 12)
|
|
|
|
#define T1_SIGMA_13 (1U << 13)
|
|
|
|
#define T1_SIGMA_14 (1U << 14)
|
|
|
|
#define T1_SIGMA_15 (1U << 15)
|
|
|
|
#define T1_SIGMA_16 (1U << 16)
|
|
|
|
#define T1_SIGMA_17 (1U << 17)
|
|
|
|
|
|
|
|
#define T1_CHI_0 (1U << 18)
|
|
|
|
#define T1_CHI_0_I 18
|
|
|
|
#define T1_CHI_1 (1U << 19)
|
|
|
|
#define T1_CHI_1_I 19
|
|
|
|
#define T1_MU_0 (1U << 20)
|
|
|
|
#define T1_PI_0 (1U << 21)
|
|
|
|
#define T1_CHI_2 (1U << 22)
|
|
|
|
#define T1_CHI_2_I 22
|
|
|
|
#define T1_MU_1 (1U << 23)
|
|
|
|
#define T1_PI_1 (1U << 24)
|
|
|
|
#define T1_CHI_3 (1U << 25)
|
|
|
|
#define T1_MU_2 (1U << 26)
|
|
|
|
#define T1_PI_2 (1U << 27)
|
|
|
|
#define T1_CHI_4 (1U << 28)
|
|
|
|
#define T1_MU_3 (1U << 29)
|
|
|
|
#define T1_PI_3 (1U << 30)
|
|
|
|
#define T1_CHI_5 (1U << 31)
|
|
|
|
#define T1_CHI_5_I 31
|
|
|
|
|
|
|
|
/** As an example, the bits T1_SIGMA_3, T1_SIGMA_4 and T1_SIGMA_5
|
|
|
|
* indicate the significance state of the west neighbour of data point zero
|
|
|
|
* of our four, the point itself, and its east neighbour respectively.
|
|
|
|
* Many of the bits are arranged so that given a flags word, you can
|
|
|
|
* look at the values for the data point 0, then shift the flags
|
|
|
|
* word right by 3 bits and look at the same bit positions to see the
|
|
|
|
* values for data point 1.
|
|
|
|
*
|
|
|
|
* The \#defines below help a bit with this; say you have a flags word
|
|
|
|
* f, you can do things like
|
|
|
|
*
|
|
|
|
* (f & T1_SIGMA_THIS)
|
|
|
|
*
|
|
|
|
* to see the significance bit of data point 0, then do
|
|
|
|
*
|
|
|
|
* ((f >> 3) & T1_SIGMA_THIS)
|
|
|
|
*
|
|
|
|
* to see the significance bit of data point 1.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define T1_SIGMA_NW T1_SIGMA_0
|
|
|
|
#define T1_SIGMA_N T1_SIGMA_1
|
|
|
|
#define T1_SIGMA_NE T1_SIGMA_2
|
|
|
|
#define T1_SIGMA_W T1_SIGMA_3
|
|
|
|
#define T1_SIGMA_THIS T1_SIGMA_4
|
|
|
|
#define T1_SIGMA_E T1_SIGMA_5
|
|
|
|
#define T1_SIGMA_SW T1_SIGMA_6
|
|
|
|
#define T1_SIGMA_S T1_SIGMA_7
|
|
|
|
#define T1_SIGMA_SE T1_SIGMA_8
|
|
|
|
#define T1_SIGMA_NEIGHBOURS (T1_SIGMA_NW | T1_SIGMA_N | T1_SIGMA_NE | T1_SIGMA_W | T1_SIGMA_E | T1_SIGMA_SW | T1_SIGMA_S | T1_SIGMA_SE)
|
|
|
|
|
|
|
|
#define T1_CHI_THIS T1_CHI_1
|
|
|
|
#define T1_CHI_THIS_I T1_CHI_1_I
|
|
|
|
#define T1_MU_THIS T1_MU_0
|
|
|
|
#define T1_PI_THIS T1_PI_0
|
|
|
|
#define T1_CHI_S T1_CHI_2
|
|
|
|
|
|
|
|
#define T1_LUT_SGN_W (1U << 0)
|
|
|
|
#define T1_LUT_SIG_N (1U << 1)
|
|
|
|
#define T1_LUT_SGN_E (1U << 2)
|
|
|
|
#define T1_LUT_SIG_W (1U << 3)
|
|
|
|
#define T1_LUT_SGN_N (1U << 4)
|
|
|
|
#define T1_LUT_SIG_E (1U << 5)
|
|
|
|
#define T1_LUT_SGN_S (1U << 6)
|
|
|
|
#define T1_LUT_SIG_S (1U << 7)
|
|
|
|
/* END of flags that apply to opj_flag_t */
|
|
|
|
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/** Flags for 4 consecutive rows of a column */
|
|
|
|
typedef OPJ_UINT32 opj_flag_t;
|
|
|
|
|
|
|
|
/**
|
|
|
|
Tier-1 coding (coding of code-block coefficients)
|
|
|
|
*/
|
|
|
|
typedef struct opj_t1 {
|
|
|
|
|
|
|
|
/** MQC component */
|
|
|
|
opj_mqc_t mqc;
|
|
|
|
|
|
|
|
OPJ_INT32 *data;
|
|
|
|
/** Flags used by decoder and encoder.
|
|
|
|
* Such that flags[1+0] is for state of col=0,row=0..3,
|
|
|
|
flags[1+1] for col=1, row=0..3, flags[1+flags_stride] for col=0,row=4..7, ...
|
|
|
|
This array avoids too much cache trashing when processing by 4 vertical samples
|
|
|
|
as done in the various decoding steps. */
|
|
|
|
opj_flag_t *flags;
|
|
|
|
|
|
|
|
OPJ_UINT32 w;
|
|
|
|
OPJ_UINT32 h;
|
|
|
|
OPJ_UINT32 datasize;
|
|
|
|
OPJ_UINT32 flagssize;
|
|
|
|
OPJ_BOOL encoder;
|
|
|
|
|
|
|
|
/* Thre 3 variables below are only used by the decoder */
|
|
|
|
/* set to TRUE in multithreaded context */
|
|
|
|
OPJ_BOOL mustuse_cblkdatabuffer;
|
|
|
|
/* Temporary buffer to concatenate all chunks of a codebock */
|
|
|
|
OPJ_BYTE *cblkdatabuffer;
|
|
|
|
/* Maximum size available in cblkdatabuffer */
|
|
|
|
OPJ_UINT32 cblkdatabuffersize;
|
|
|
|
} opj_t1_t;
|
|
|
|
|
|
|
|
/** @name Exported functions */
|
|
|
|
/*@{*/
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
|
|
|
|
/**
|
|
|
|
Encode the code-blocks of a tile
|
2021-03-02 07:49:55 +08:00
|
|
|
@param tcd TCD handle
|
2020-08-25 18:06:09 +08:00
|
|
|
@param tile The tile to encode
|
|
|
|
@param tcp Tile coding parameters
|
|
|
|
@param mct_norms FIXME DOC
|
|
|
|
@param mct_numcomps Number of components used for MCT
|
|
|
|
*/
|
2021-03-02 07:49:55 +08:00
|
|
|
OPJ_BOOL opj_t1_encode_cblks(opj_tcd_t* tcd,
|
2020-08-25 18:06:09 +08:00
|
|
|
opj_tcd_tile_t *tile,
|
|
|
|
opj_tcp_t *tcp,
|
|
|
|
const OPJ_FLOAT64 * mct_norms,
|
|
|
|
OPJ_UINT32 mct_numcomps);
|
|
|
|
|
|
|
|
/**
|
|
|
|
Decode the code-blocks of a tile
|
|
|
|
@param tcd TCD handle
|
|
|
|
@param pret Pointer to return value
|
|
|
|
@param tilec The tile to decode
|
|
|
|
@param tccp Tile coding parameters
|
|
|
|
@param p_manager the event manager
|
|
|
|
@param p_manager_mutex mutex for the event manager
|
|
|
|
@param check_pterm whether PTERM correct termination should be checked
|
|
|
|
*/
|
|
|
|
void opj_t1_decode_cblks(opj_tcd_t* tcd,
|
|
|
|
volatile OPJ_BOOL* pret,
|
|
|
|
opj_tcd_tilecomp_t* tilec,
|
|
|
|
opj_tccp_t* tccp,
|
|
|
|
opj_event_mgr_t *p_manager,
|
|
|
|
opj_mutex_t* p_manager_mutex,
|
|
|
|
OPJ_BOOL check_pterm);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Creates a new Tier 1 handle
|
|
|
|
* and initializes the look-up tables of the Tier-1 coder/decoder
|
|
|
|
* @return a new T1 handle if successful, returns NULL otherwise
|
|
|
|
*/
|
|
|
|
opj_t1_t* opj_t1_create(OPJ_BOOL isEncoder);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Destroys a previously created T1 handle
|
|
|
|
*
|
|
|
|
* @param p_t1 Tier 1 handle to destroy
|
|
|
|
*/
|
|
|
|
void opj_t1_destroy(opj_t1_t *p_t1);
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
/*@}*/
|
|
|
|
|
|
|
|
/*@}*/
|
|
|
|
|
|
|
|
#endif /* OPJ_T1_H */
|