opencv/samples/cpp/smiledetect.cpp

214 lines
7.0 KiB
C++
Raw Normal View History

#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
2013-02-22 00:17:34 +08:00
#include <iostream>
using namespace std;
using namespace cv;
static void help()
{
cout << "\nThis program demonstrates the smile detector.\n"
"Usage:\n"
"./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n"
" [--smile-cascade=[<smile_cascade_path>]]\n"
" [--scale=<image scale greater or equal to 1, try 2.0 for example. The larger the faster the processing>]\n"
2013-02-22 00:17:34 +08:00
" [--try-flip]\n"
" [video_filename|camera_index]\n\n"
2013-02-22 00:17:34 +08:00
"Example:\n"
"./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n"
2013-02-22 00:17:34 +08:00
"During execution:\n\tHit any key to quit.\n"
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
}
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip );
2015-08-01 23:24:23 +08:00
string cascadeName;
string nestedCascadeName;
2013-02-22 00:17:34 +08:00
int main( int argc, const char** argv )
{
2015-09-18 16:39:39 +08:00
VideoCapture capture;
Mat frame, image;
2013-02-22 00:17:34 +08:00
string inputName;
2015-08-01 23:24:23 +08:00
bool tryflip;
2013-02-22 00:17:34 +08:00
help();
CascadeClassifier cascade, nestedCascade;
2015-08-01 23:24:23 +08:00
double scale;
cv::CommandLineParser parser(argc, argv,
"{help h||}{scale|1|}"
"{cascade|../../data/haarcascades/haarcascade_frontalface_alt.xml|}"
"{smile-cascade|../../data/haarcascades/haarcascade_smile.xml|}"
"{try-flip||}{@input||}");
if (parser.has("help"))
2013-02-22 00:17:34 +08:00
{
2015-08-01 23:24:23 +08:00
help();
return 0;
2013-02-22 00:17:34 +08:00
}
2015-08-01 23:24:23 +08:00
cascadeName = parser.get<string>("cascade");
nestedCascadeName = parser.get<string>("smile-cascade");
tryflip = parser.has("try-flip");
inputName = parser.get<string>("@input");
scale = parser.get<int>("scale");
if (!parser.check())
{
help();
return 1;
}
if (scale < 1)
scale = 1;
2013-02-22 00:17:34 +08:00
if( !cascade.load( cascadeName ) )
{
cerr << "ERROR: Could not load face cascade" << endl;
help();
return -1;
}
if( !nestedCascade.load( nestedCascadeName ) )
{
cerr << "ERROR: Could not load smile cascade" << endl;
2013-02-22 00:17:34 +08:00
help();
return -1;
}
2015-08-01 23:24:23 +08:00
if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) )
2013-02-22 00:17:34 +08:00
{
2015-08-01 23:24:23 +08:00
int c = inputName.empty() ? 0 : inputName[0] - '0' ;
2015-09-18 16:39:39 +08:00
if(!capture.open(c))
cout << "Capture from camera #" << c << " didn't work" << endl;
2013-02-22 00:17:34 +08:00
}
else if( inputName.size() )
{
2015-09-18 16:39:39 +08:00
if(!capture.open( inputName ))
cout << "Could not read " << inputName << endl;
2013-02-22 00:17:34 +08:00
}
2015-09-18 16:39:39 +08:00
if( capture.isOpened() )
2013-02-22 00:17:34 +08:00
{
2015-09-18 16:39:39 +08:00
cout << "Video capturing has been started ..." << endl;
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl;
2013-02-22 00:17:34 +08:00
for(;;)
{
2015-09-18 16:39:39 +08:00
capture >> frame;
2013-02-22 00:17:34 +08:00
if( frame.empty() )
break;
2015-09-18 16:39:39 +08:00
Mat frame1 = frame.clone();
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );
2013-02-22 00:17:34 +08:00
2015-09-18 16:39:39 +08:00
int c = waitKey(10);
if( c == 27 || c == 'q' || c == 'Q' )
break;
2013-02-22 00:17:34 +08:00
}
}
else
{
cerr << "ERROR: Could not initiate capture" << endl;
help();
return -1;
2013-02-22 00:17:34 +08:00
}
return 0;
}
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip)
{
vector<Rect> faces, faces2;
2015-09-18 16:39:39 +08:00
const static Scalar colors[] =
{
Scalar(255,0,0),
Scalar(255,128,0),
Scalar(255,255,0),
Scalar(0,255,0),
Scalar(0,128,255),
Scalar(0,255,255),
Scalar(0,0,255),
Scalar(255,0,255)
};
Mat gray, smallImg;
2013-02-22 00:17:34 +08:00
cvtColor( img, gray, COLOR_BGR2GRAY );
2015-09-18 16:39:39 +08:00
double fx = 1 / scale;
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
2013-02-22 00:17:34 +08:00
equalizeHist( smallImg, smallImg );
cascade.detectMultiScale( smallImg, faces,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
2015-09-18 16:39:39 +08:00
|CASCADE_SCALE_IMAGE,
2013-02-22 00:17:34 +08:00
Size(30, 30) );
if( tryflip )
{
flip(smallImg, smallImg, 1);
cascade.detectMultiScale( smallImg, faces2,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
2015-09-18 16:39:39 +08:00
|CASCADE_SCALE_IMAGE,
2013-02-22 00:17:34 +08:00
Size(30, 30) );
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
2015-09-18 16:39:39 +08:00
for ( size_t i = 0; i < faces.size(); i++ )
2013-02-22 00:17:34 +08:00
{
2015-09-18 16:39:39 +08:00
Rect r = faces[i];
2013-02-22 00:17:34 +08:00
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
2015-09-18 16:39:39 +08:00
double aspect_ratio = (double)r.width/r.height;
2013-02-22 00:17:34 +08:00
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
{
2015-09-18 16:39:39 +08:00
center.x = cvRound((r.x + r.width*0.5)*scale);
center.y = cvRound((r.y + r.height*0.5)*scale);
radius = cvRound((r.width + r.height)*0.25*scale);
2013-02-22 00:17:34 +08:00
circle( img, center, radius, color, 3, 8, 0 );
}
else
2015-09-18 16:39:39 +08:00
rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
2013-02-22 00:17:34 +08:00
color, 3, 8, 0);
2015-09-18 16:39:39 +08:00
const int half_height=cvRound((float)r.height/2);
r.y=r.y + half_height;
r.height = half_height-1;
smallImgROI = smallImg( r );
2013-02-22 00:17:34 +08:00
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
1.1, 0, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
//|CASCADE_DO_CANNY_PRUNING
2015-09-18 16:39:39 +08:00
|CASCADE_SCALE_IMAGE,
2013-02-22 00:17:34 +08:00
Size(30, 30) );
// The number of detected neighbors depends on image size (and also illumination, etc.). The
// following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be
//accurate only after a first smile has been displayed by the user.
const int smile_neighbors = (int)nestedObjects.size();
static int max_neighbors=-1;
static int min_neighbors=-1;
if (min_neighbors == -1) min_neighbors = smile_neighbors;
max_neighbors = MAX(max_neighbors, smile_neighbors);
// Draw rectangle on the left side of the image reflecting smile intensity
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1);
int rect_height = cvRound((float)img.rows * intensityZeroOne);
2015-09-18 16:39:39 +08:00
Scalar col = Scalar((float)255 * intensityZeroOne, 0, 0);
2013-02-22 00:17:34 +08:00
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1);
}
2013-02-22 00:17:34 +08:00
2015-09-18 16:39:39 +08:00
imshow( "result", img );
2013-02-22 00:17:34 +08:00
}