opencv/modules/core/src/gpumat.cpp

1449 lines
57 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/gpumat.hpp"
#include <iostream>
#ifdef HAVE_CUDA
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <npp.h>
#define CUDART_MINIMUM_REQUIRED_VERSION 4010
#define NPP_MINIMUM_REQUIRED_VERSION 4100
#if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION)
#error "Insufficient Cuda Runtime library version, please update it."
#endif
#if (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD < NPP_MINIMUM_REQUIRED_VERSION)
#error "Insufficient NPP version, please update it."
#endif
#endif
using namespace std;
using namespace cv;
using namespace cv::gpu;
//////////////////////////////// Initialization & Info ////////////////////////
namespace
{
// Compares value to set using the given comparator. Returns true if
// there is at least one element x in the set satisfying to: x cmp value
// predicate.
template <typename Comparer>
bool compareToSet(const std::string& set_as_str, int value, Comparer cmp)
{
if (set_as_str.find_first_not_of(" ") == string::npos)
return false;
std::stringstream stream(set_as_str);
int cur_value;
while (!stream.eof())
{
stream >> cur_value;
if (cmp(cur_value, value))
return true;
}
return false;
}
}
bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_FEATURES, feature_set, std::greater_equal<int>());
#else
(void)feature_set;
return false;
#endif
}
bool cv::gpu::TargetArchs::has(int major, int minor)
{
return hasPtx(major, minor) || hasBin(major, minor);
}
bool cv::gpu::TargetArchs::hasPtx(int major, int minor)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor, std::equal_to<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
bool cv::gpu::TargetArchs::hasBin(int major, int minor)
{
#if defined (HAVE_CUDA)
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor, std::equal_to<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
std::less_equal<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor)
{
return hasEqualOrGreaterPtx(major, minor) ||
hasEqualOrGreaterBin(major, minor);
}
bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_PTX, major * 10 + minor,
std::greater_equal<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor)
{
#ifdef HAVE_CUDA
return ::compareToSet(CUDA_ARCH_BIN, major * 10 + minor,
std::greater_equal<int>());
#else
(void)major;
(void)minor;
return false;
#endif
}
#ifndef HAVE_CUDA
#define throw_nogpu CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support")
int cv::gpu::getCudaEnabledDeviceCount() { return 0; }
void cv::gpu::setDevice(int) { throw_nogpu; }
int cv::gpu::getDevice() { throw_nogpu; return 0; }
void cv::gpu::resetDevice() { throw_nogpu; }
size_t cv::gpu::DeviceInfo::freeMemory() const { throw_nogpu; return 0; }
size_t cv::gpu::DeviceInfo::totalMemory() const { throw_nogpu; return 0; }
bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet) const { throw_nogpu; return false; }
bool cv::gpu::DeviceInfo::isCompatible() const { throw_nogpu; return false; }
void cv::gpu::DeviceInfo::query() { throw_nogpu; }
void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_nogpu; }
void cv::gpu::printCudaDeviceInfo(int) { throw_nogpu; }
void cv::gpu::printShortCudaDeviceInfo(int) { throw_nogpu; }
#undef throw_nogpu
#else // HAVE_CUDA
namespace
{
#if defined(__GNUC__)
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, __func__)
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__, __func__)
#else /* defined(__CUDACC__) || defined(__MSVC__) */
#define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__)
#define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__)
#endif
inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
{
if (cudaSuccess != err)
cv::gpu::error(cudaGetErrorString(err), file, line, func);
}
inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
{
if (err < 0)
{
std::ostringstream msg;
msg << "NPP API Call Error: " << err;
cv::gpu::error(msg.str().c_str(), file, line, func);
}
}
}
int cv::gpu::getCudaEnabledDeviceCount()
{
int count;
cudaError_t error = cudaGetDeviceCount( &count );
if (error == cudaErrorInsufficientDriver)
return -1;
if (error == cudaErrorNoDevice)
return 0;
cudaSafeCall(error);
return count;
}
void cv::gpu::setDevice(int device)
{
cudaSafeCall( cudaSetDevice( device ) );
}
int cv::gpu::getDevice()
{
int device;
cudaSafeCall( cudaGetDevice( &device ) );
return device;
}
void cv::gpu::resetDevice()
{
cudaSafeCall( cudaDeviceReset() );
}
size_t cv::gpu::DeviceInfo::freeMemory() const
{
size_t free_memory, total_memory;
queryMemory(free_memory, total_memory);
return free_memory;
}
size_t cv::gpu::DeviceInfo::totalMemory() const
{
size_t free_memory, total_memory;
queryMemory(free_memory, total_memory);
return total_memory;
}
bool cv::gpu::DeviceInfo::supports(cv::gpu::FeatureSet feature_set) const
{
int version = majorVersion() * 10 + minorVersion();
return version >= feature_set;
}
bool cv::gpu::DeviceInfo::isCompatible() const
{
// Check PTX compatibility
if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion()))
return true;
// Check BIN compatibility
for (int i = minorVersion(); i >= 0; --i)
if (TargetArchs::hasBin(majorVersion(), i))
return true;
return false;
}
void cv::gpu::DeviceInfo::query()
{
cudaDeviceProp prop;
cudaSafeCall(cudaGetDeviceProperties(&prop, device_id_));
name_ = prop.name;
multi_processor_count_ = prop.multiProcessorCount;
majorVersion_ = prop.major;
minorVersion_ = prop.minor;
}
void cv::gpu::DeviceInfo::queryMemory(size_t& free_memory, size_t& total_memory) const
{
int prev_device_id = getDevice();
if (prev_device_id != device_id_)
setDevice(device_id_);
cudaSafeCall(cudaMemGetInfo(&free_memory, &total_memory));
if (prev_device_id != device_id_)
setDevice(prev_device_id);
}
namespace
{
template <class T> void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device)
{
*attribute = T();
//CUresult error = CUDA_SUCCESS;// = cuDeviceGetAttribute( attribute, device_attribute, device ); why link erros under ubuntu??
CUresult error = cuDeviceGetAttribute( attribute, device_attribute, device );
if( CUDA_SUCCESS == error )
return;
printf("Driver API error = %04d\n", error);
cv::gpu::error("driver API error", __FILE__, __LINE__);
}
int convertSMVer2Cores(int major, int minor)
{
// Defines for GPU Architecture types (using the SM version to determine the # of cores per SM
typedef struct {
int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version
int Cores;
} SMtoCores;
SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, { -1, -1 } };
int index = 0;
while (gpuArchCoresPerSM[index].SM != -1)
{
if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) )
return gpuArchCoresPerSM[index].Cores;
index++;
}
printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
return -1;
}
}
void cv::gpu::printCudaDeviceInfo(int device)
{
int count = getCudaEnabledDeviceCount();
bool valid = (device >= 0) && (device < count);
int beg = valid ? device : 0;
int end = valid ? device+1 : count;
printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n");
printf("Device count: %d\n", count);
int driverVersion = 0, runtimeVersion = 0;
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
const char *computeMode[] = {
"Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)",
"Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)",
"Prohibited (no host thread can use ::cudaSetDevice() with this device)",
"Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)",
"Unknown",
NULL
};
for(int dev = beg; dev < end; ++dev)
{
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
printf("\nDevice %d: \"%s\"\n", dev, prop.name);
printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor);
printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem);
printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n",
prop.multiProcessorCount, convertSMVer2Cores(prop.major, prop.minor),
convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f);
// This is not available in the CUDA Runtime API, so we make the necessary calls the driver API to support this for output
int memoryClock, memBusWidth, L2CacheSize;
getCudaAttribute<int>( &memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev );
getCudaAttribute<int>( &memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev );
getCudaAttribute<int>( &L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev );
printf(" Memory Clock rate: %.2f Mhz\n", memoryClock * 1e-3f);
printf(" Memory Bus Width: %d-bit\n", memBusWidth);
if (L2CacheSize)
printf(" L2 Cache Size: %d bytes\n", L2CacheSize);
printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n",
prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1],
prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]);
printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n",
prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1],
prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]);
printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem);
printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock);
printf(" Total number of registers available per block: %d\n", prop.regsPerBlock);
printf(" Warp size: %d\n", prop.warpSize);
printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock);
printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]);
printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]);
printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch);
printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment);
printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount);
printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No");
printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No");
printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No");
printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No");
printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No");
printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No");
printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No");
printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No");
printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID );
printf(" Compute Mode:\n");
printf(" %s \n", computeMode[prop.computeMode]);
}
printf("\n");
printf("deviceQuery, CUDA Driver = CUDART");
printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100);
printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100);
printf(", NumDevs = %d\n\n", count);
fflush(stdout);
}
void cv::gpu::printShortCudaDeviceInfo(int device)
{
int count = getCudaEnabledDeviceCount();
bool valid = (device >= 0) && (device < count);
int beg = valid ? device : 0;
int end = valid ? device+1 : count;
int driverVersion = 0, runtimeVersion = 0;
cudaSafeCall( cudaDriverGetVersion(&driverVersion) );
cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) );
for(int dev = beg; dev < end; ++dev)
{
cudaDeviceProp prop;
cudaSafeCall( cudaGetDeviceProperties(&prop, dev) );
const char *arch_str = prop.major < 2 ? " (not Fermi)" : "";
printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f);
printf(", sm_%d%d%s, %d cores", prop.major, prop.minor, arch_str, convertSMVer2Cores(prop.major, prop.minor) * prop.multiProcessorCount);
printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100);
}
fflush(stdout);
}
#endif // HAVE_CUDA
//////////////////////////////// GpuMat ///////////////////////////////
2011-11-23 21:26:24 +08:00
cv::gpu::GpuMat::GpuMat(const GpuMat& m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend)
{
if (refcount)
CV_XADD(refcount, 1);
}
2011-11-23 21:26:24 +08:00
cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(rows_), cols(cols_),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((uchar*)data_)
{
size_t minstep = cols * elemSize();
if (step == Mat::AUTO_STEP)
{
step = minstep;
flags |= Mat::CONTINUOUS_FLAG;
}
else
{
2011-11-23 21:26:24 +08:00
if (rows == 1)
step = minstep;
CV_DbgAssert(step >= minstep);
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
}
dataend += step * (rows - 1) + minstep;
}
2011-11-23 21:26:24 +08:00
cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) :
flags(Mat::MAGIC_VAL + (type_ & TYPE_MASK)), rows(size_.height), cols(size_.width),
step(step_), data((uchar*)data_), refcount(0),
datastart((uchar*)data_), dataend((uchar*)data_)
{
size_t minstep = cols * elemSize();
if (step == Mat::AUTO_STEP)
{
step = minstep;
flags |= Mat::CONTINUOUS_FLAG;
}
else
{
2011-11-23 21:26:24 +08:00
if (rows == 1)
step = minstep;
CV_DbgAssert(step >= minstep);
flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0;
}
dataend += step * (rows - 1) + minstep;
}
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range rowRange, Range colRange)
{
flags = m.flags;
step = m.step; refcount = m.refcount;
data = m.data; datastart = m.datastart; dataend = m.dataend;
if (rowRange == Range::all())
rows = m.rows;
else
{
CV_Assert(0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows);
rows = rowRange.size();
data += step*rowRange.start;
}
if (colRange == Range::all())
cols = m.cols;
else
{
CV_Assert(0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols);
cols = colRange.size();
data += colRange.start*elemSize();
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
}
if (rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
}
2011-11-23 21:26:24 +08:00
cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) :
flags(m.flags), rows(roi.height), cols(roi.width),
step(m.step), data(m.data + roi.y*step), refcount(m.refcount),
datastart(m.datastart), dataend(m.dataend)
{
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
data += roi.x * elemSize();
CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows);
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
}
2011-11-23 21:26:24 +08:00
cv::gpu::GpuMat::GpuMat(const Mat& m) :
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0)
{
upload(m);
}
GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m)
{
if (this != &m)
{
GpuMat temp(m);
swap(temp);
}
return *this;
}
void cv::gpu::GpuMat::swap(GpuMat& b)
{
std::swap(flags, b.flags);
2011-11-23 21:26:24 +08:00
std::swap(rows, b.rows);
std::swap(cols, b.cols);
2011-11-23 21:26:24 +08:00
std::swap(step, b.step);
std::swap(data, b.data);
std::swap(datastart, b.datastart);
std::swap(dataend, b.dataend);
std::swap(refcount, b.refcount);
}
void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const
{
size_t esz = elemSize();
ptrdiff_t delta1 = data - datastart;
ptrdiff_t delta2 = dataend - datastart;
CV_DbgAssert(step > 0);
if (delta1 == 0)
ofs.x = ofs.y = 0;
else
{
ofs.y = static_cast<int>(delta1 / step);
ofs.x = static_cast<int>((delta1 - step * ofs.y) / esz);
CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz);
}
size_t minstep = (ofs.x + cols) * esz;
wholeSize.height = std::max(static_cast<int>((delta2 - minstep) / step + 1), ofs.y + rows);
wholeSize.width = std::max(static_cast<int>((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols);
}
GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright)
{
2011-11-23 21:26:24 +08:00
Size wholeSize;
Point ofs;
locateROI(wholeSize, ofs);
size_t esz = elemSize();
2011-11-23 21:26:24 +08:00
int row1 = std::max(ofs.y - dtop, 0);
int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
int col1 = std::max(ofs.x - dleft, 0);
int col2 = std::min(ofs.x + cols + dright, wholeSize.width);
data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
2011-11-23 21:26:24 +08:00
rows = row2 - row1;
cols = col2 - col1;
if (esz * cols == step || rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
else
flags &= ~Mat::CONTINUOUS_FLAG;
return *this;
}
GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const
{
GpuMat hdr = *this;
int cn = channels();
if (new_cn == 0)
new_cn = cn;
int total_width = cols * cn;
if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0)
new_rows = rows * total_width / new_cn;
if (new_rows != 0 && new_rows != rows)
{
int total_size = total_width * rows;
if (!isContinuous())
CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed");
if ((unsigned)new_rows > (unsigned)total_size)
CV_Error(CV_StsOutOfRange, "Bad new number of rows");
total_width = total_size / new_rows;
if (total_width * new_rows != total_size)
CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows");
hdr.rows = new_rows;
hdr.step = total_width * elemSize1();
}
int new_width = total_width / new_cn;
if (new_width * new_cn != total_width)
CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels");
hdr.cols = new_width;
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT);
return hdr;
}
cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{
m.download(*this);
}
namespace
{
2012-04-23 16:31:14 +08:00
class GpuFuncTable
{
public:
virtual ~GpuFuncTable() {}
virtual void copy(const Mat& src, GpuMat& dst) const = 0;
virtual void copy(const GpuMat& src, Mat& dst) const = 0;
virtual void copy(const GpuMat& src, GpuMat& dst) const = 0;
virtual void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const = 0;
virtual void convert(const GpuMat& src, GpuMat& dst) const = 0;
virtual void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const = 0;
virtual void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const = 0;
virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0;
virtual void free(void* devPtr) const = 0;
};
}
#ifndef HAVE_CUDA
namespace
{
class EmptyFuncTable : public GpuFuncTable
{
public:
void copy(const Mat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void copy(const GpuMat&, Mat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void copy(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void convert(const GpuMat&, GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void convert(const GpuMat&, GpuMat&, double, double) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void setTo(GpuMat&, Scalar, const GpuMat&) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void mallocPitch(void**, size_t*, size_t, size_t) const { CV_Error(CV_GpuNotSupported, "The library is compiled without CUDA support"); }
void free(void*) const {}
};
const GpuFuncTable* gpuFuncTable()
{
static EmptyFuncTable empty;
return &empty;
}
}
#else // HAVE_CUDA
2011-11-23 21:26:24 +08:00
namespace cv { namespace gpu { namespace device
{
void copyToWithMask_gpu(DevMem2Db src, DevMem2Db dst, size_t elemSize1, int cn, DevMem2Db mask, bool colorMask, cudaStream_t stream);
template <typename T>
void set_to_gpu(DevMem2Db mat, const T* scalar, int channels, cudaStream_t stream);
template <typename T>
void set_to_gpu(DevMem2Db mat, const T* scalar, DevMem2Db mask, int channels, cudaStream_t stream);
void convert_gpu(DevMem2Db src, int sdepth, DevMem2Db dst, int ddepth, double alpha, double beta, cudaStream_t stream);
}}}
namespace
{
template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream)
{
Scalar_<T> sf = s;
cv::gpu::device::set_to_gpu(src, sf.val, src.channels(), stream);
}
template <typename T> void kernelSetCaller(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
Scalar_<T> sf = s;
cv::gpu::device::set_to_gpu(src, sf.val, mask, src.channels(), stream);
}
}
namespace cv { namespace gpu
{
2011-11-23 21:26:24 +08:00
CV_EXPORTS void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0)
{
CV_Assert(src.size() == dst.size() && src.type() == dst.type());
CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));
cv::gpu::device::copyToWithMask_gpu(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream);
}
CV_EXPORTS void convertTo(const GpuMat& src, GpuMat& dst)
{
cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0);
2011-11-23 21:26:24 +08:00
}
CV_EXPORTS void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0)
{
cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream);
}
CV_EXPORTS void setTo(GpuMat& src, Scalar s, cudaStream_t stream)
{
typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream);
2011-11-23 21:26:24 +08:00
static const caller_t callers[] =
{
kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
kernelSetCaller<float>, kernelSetCaller<double>
};
callers[src.depth()](src, s, stream);
}
CV_EXPORTS void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream)
{
typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream);
2011-11-23 21:26:24 +08:00
static const caller_t callers[] =
{
kernelSetCaller<uchar>, kernelSetCaller<schar>, kernelSetCaller<ushort>, kernelSetCaller<short>, kernelSetCaller<int>,
kernelSetCaller<float>, kernelSetCaller<double>
};
callers[src.depth()](src, s, mask, stream);
}
CV_EXPORTS void setTo(GpuMat& src, Scalar s)
{
setTo(src, s, 0);
}
CV_EXPORTS void setTo(GpuMat& src, Scalar s, const GpuMat& mask)
{
setTo(src, s, mask, 0);
}
}}
namespace
{
template<int n> struct NPPTypeTraits;
template<> struct NPPTypeTraits<CV_8U> { typedef Npp8u npp_type; };
template<> struct NPPTypeTraits<CV_8S> { typedef Npp8s npp_type; };
template<> struct NPPTypeTraits<CV_16U> { typedef Npp16u npp_type; };
template<> struct NPPTypeTraits<CV_16S> { typedef Npp16s npp_type; };
template<> struct NPPTypeTraits<CV_32S> { typedef Npp32s npp_type; };
template<> struct NPPTypeTraits<CV_32F> { typedef Npp32f npp_type; };
template<> struct NPPTypeTraits<CV_64F> { typedef Npp64f npp_type; };
//////////////////////////////////////////////////////////////////////////
// Convert
template<int SDEPTH, int DDEPTH> struct NppConvertFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI);
};
template<int DDEPTH> struct NppConvertFunc<CV_32F, DDEPTH>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode);
};
template<int SDEPTH, int DDEPTH, typename NppConvertFunc<SDEPTH, DDEPTH>::func_ptr func> struct NppCvt
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void call(const GpuMat& src, GpuMat& dst)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int DDEPTH, typename NppConvertFunc<CV_32F, DDEPTH>::func_ptr func> struct NppCvt<CV_32F, DDEPTH, func>
{
typedef typename NPPTypeTraits<DDEPTH>::npp_type dst_t;
static void call(const GpuMat& src, GpuMat& dst)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<Npp32f>(), static_cast<int>(src.step), dst.ptr<dst_t>(), static_cast<int>(dst.step), sz, NPP_RND_NEAR) );
cudaSafeCall( cudaDeviceSynchronize() );
}
2011-11-23 21:26:24 +08:00
};
//////////////////////////////////////////////////////////////////////////
// Set
2011-11-23 21:26:24 +08:00
template<int SDEPTH, int SCN> struct NppSetFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH> struct NppSetFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SCN> struct NppSetFunc<CV_8S, SCN>
{
typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<> struct NppSetFunc<CV_8S, 1>
{
typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI);
};
template<int SDEPTH, int SCN, typename NppSetFunc<SDEPTH, SCN>::func_ptr func> struct NppSet
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppSetFunc<SDEPTH, 1>::func_ptr func> struct NppSet<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz) );
cudaSafeCall( cudaDeviceSynchronize() );
}
2011-11-23 21:26:24 +08:00
};
template<int SDEPTH, int SCN> struct NppSetMaskFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH> struct NppSetMaskFunc<SDEPTH, 1>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH, int SCN, typename NppSetMaskFunc<SDEPTH, SCN>::func_ptr func> struct NppSetMask
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, const GpuMat& mask)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS.val, src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppSetMaskFunc<SDEPTH, 1>::func_ptr func> struct NppSetMask<SDEPTH, 1, func>
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(GpuMat& src, Scalar s, const GpuMat& mask)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Scalar_<src_t> nppS = s;
nppSafeCall( func(nppS[0], src.ptr<src_t>(), static_cast<int>(src.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
cudaSafeCall( cudaDeviceSynchronize() );
}
2011-11-23 21:26:24 +08:00
};
//////////////////////////////////////////////////////////////////////////
// CopyMasked
template<int SDEPTH> struct NppCopyMaskedFunc
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep);
};
template<int SDEPTH, typename NppCopyMaskedFunc<SDEPTH>::func_ptr func> struct NppCopyMasked
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/)
{
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), dst.ptr<src_t>(), static_cast<int>(dst.step), sz, mask.ptr<Npp8u>(), static_cast<int>(mask.step)) );
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template <typename T> static inline bool isAligned(const T* ptr, size_t size)
{
return reinterpret_cast<size_t>(ptr) % size == 0;
}
//////////////////////////////////////////////////////////////////////////
// CudaFuncTable
class CudaFuncTable : public GpuFuncTable
{
public:
2011-11-23 21:26:24 +08:00
void copy(const Mat& src, GpuMat& dst) const
{
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) );
}
void copy(const GpuMat& src, Mat& dst) const
2011-11-23 21:26:24 +08:00
{
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost) );
}
void copy(const GpuMat& src, GpuMat& dst) const
2011-11-23 21:26:24 +08:00
{
cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToDevice) );
}
2011-11-23 21:26:24 +08:00
void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const
{
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
CV_Assert(src.size() == dst.size() && src.type() == dst.type());
CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()));
if (src.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream);
static const func_t funcs[7][4] =
{
/* 8U */ {NppCopyMasked<CV_8U , nppiCopy_8u_C1MR >::call, cv::gpu::copyWithMask, NppCopyMasked<CV_8U , nppiCopy_8u_C3MR >::call, NppCopyMasked<CV_8U , nppiCopy_8u_C4MR >::call},
/* 8S */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask },
/* 16U */ {NppCopyMasked<CV_16U, nppiCopy_16u_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16U, nppiCopy_16u_C3MR>::call, NppCopyMasked<CV_16U, nppiCopy_16u_C4MR>::call},
/* 16S */ {NppCopyMasked<CV_16S, nppiCopy_16s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_16S, nppiCopy_16s_C3MR>::call, NppCopyMasked<CV_16S, nppiCopy_16s_C4MR>::call},
/* 32S */ {NppCopyMasked<CV_32S, nppiCopy_32s_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32S, nppiCopy_32s_C3MR>::call, NppCopyMasked<CV_32S, nppiCopy_32s_C4MR>::call},
/* 32F */ {NppCopyMasked<CV_32F, nppiCopy_32f_C1MR>::call, cv::gpu::copyWithMask, NppCopyMasked<CV_32F, nppiCopy_32f_C3MR>::call, NppCopyMasked<CV_32F, nppiCopy_32f_C4MR>::call},
/* 64F */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask }
};
const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::copyWithMask;
func(src, dst, mask, 0);
}
2011-11-23 21:26:24 +08:00
void convert(const GpuMat& src, GpuMat& dst) const
{
typedef void (*func_t)(const GpuMat& src, GpuMat& dst);
static const func_t funcs[7][7][4] =
{
2011-11-23 21:26:24 +08:00
{
/* 8U -> 8U */ {0, 0, 0, 0},
/* 8U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 8U -> 16U */ {NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16U, nppiConvert_8u16u_C4R>::call},
/* 8U -> 16S */ {NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_8U, CV_16S, nppiConvert_8u16s_C4R>::call},
/* 8U -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 8U -> 32F */ {NppCvt<CV_8U, CV_32F, nppiConvert_8u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 8U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
},
{
/* 8S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 8S */ {0,0,0,0},
/* 8S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 8S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
},
{
/* 16U -> 8U */ {NppCvt<CV_16U, CV_8U , nppiConvert_16u8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16U, CV_8U, nppiConvert_16u8u_C4R>::call},
/* 16U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16U -> 16U */ {0,0,0,0},
/* 16U -> 16S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16U -> 32S */ {NppCvt<CV_16U, CV_32S, nppiConvert_16u32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16U -> 32F */ {NppCvt<CV_16U, CV_32F, nppiConvert_16u32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
},
{
/* 16S -> 8U */ {NppCvt<CV_16S, CV_8U , nppiConvert_16s8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt<CV_16S, CV_8U, nppiConvert_16s8u_C4R>::call},
/* 16S -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16S -> 16U */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16S -> 16S */ {0,0,0,0},
/* 16S -> 32S */ {NppCvt<CV_16S, CV_32S, nppiConvert_16s32s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16S -> 32F */ {NppCvt<CV_16S, CV_32F, nppiConvert_16s32f_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo },
/* 16S -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }
},
{
/* 32S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 32S */ {0,0,0,0},
/* 32S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
},
{
/* 32F -> 8U */ {NppCvt<CV_32F, CV_8U , nppiConvert_32f8u_C1R >::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 16U */ {NppCvt<CV_32F, CV_16U, nppiConvert_32f16u_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 16S */ {NppCvt<CV_32F, CV_16S, nppiConvert_32f16s_C1R>::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 32F -> 32F */ {0,0,0,0},
/* 32F -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}
},
{
/* 64F -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo},
/* 64F -> 64F */ {0,0,0,0}
}
};
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
CV_Assert(dst.depth() <= CV_64F);
CV_Assert(src.size() == dst.size() && src.channels() == dst.channels());
if (src.depth() == CV_64F || dst.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16);
if (!aligned)
{
cv::gpu::convertTo(src, dst);
return;
}
const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1];
CV_DbgAssert(func != 0);
func(src, dst);
}
2011-11-23 21:26:24 +08:00
void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const
{
CV_Assert(src.depth() <= CV_64F && src.channels() <= 4);
CV_Assert(dst.depth() <= CV_64F);
if (src.depth() == CV_64F || dst.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
cv::gpu::convertTo(src, dst, alpha, beta);
}
void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const
{
NppiSize sz;
sz.width = m.cols;
sz.height = m.rows;
if (mask.empty())
{
if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0)
{
cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) );
return;
}
if (m.depth() == CV_8U)
{
int cn = m.channels();
if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3]))
{
int val = saturate_cast<uchar>(s[0]);
cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) );
return;
}
}
typedef void (*func_t)(GpuMat& src, Scalar s);
static const func_t funcs[7][4] =
{
{NppSet<CV_8U , 1, nppiSet_8u_C1R >::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_8U , 4, nppiSet_8u_C4R >::call},
{NppSet<CV_8S , 1, nppiSet_8s_C1R >::call, NppSet<CV_8S , 2, nppiSet_8s_C2R >::call, NppSet<CV_8S, 3, nppiSet_8s_C3R>::call, NppSet<CV_8S , 4, nppiSet_8s_C4R >::call},
{NppSet<CV_16U, 1, nppiSet_16u_C1R>::call, NppSet<CV_16U, 2, nppiSet_16u_C2R>::call, cv::gpu::setTo , NppSet<CV_16U, 4, nppiSet_16u_C4R>::call},
{NppSet<CV_16S, 1, nppiSet_16s_C1R>::call, NppSet<CV_16S, 2, nppiSet_16s_C2R>::call, cv::gpu::setTo , NppSet<CV_16S, 4, nppiSet_16s_C4R>::call},
{NppSet<CV_32S, 1, nppiSet_32s_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32S, 4, nppiSet_32s_C4R>::call},
{NppSet<CV_32F, 1, nppiSet_32f_C1R>::call, cv::gpu::setTo , cv::gpu::setTo , NppSet<CV_32F, 4, nppiSet_32f_C4R>::call},
{cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo }
};
CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);
if (m.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
funcs[m.depth()][m.channels() - 1](m, s);
}
else
{
typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask);
static const func_t funcs[7][4] =
{
{NppSetMask<CV_8U , 1, nppiSet_8u_C1MR >::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_8U , 4, nppiSet_8u_C4MR >::call},
{cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo },
{NppSetMask<CV_16U, 1, nppiSet_16u_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16U, 4, nppiSet_16u_C4MR>::call},
{NppSetMask<CV_16S, 1, nppiSet_16s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_16S, 4, nppiSet_16s_C4MR>::call},
{NppSetMask<CV_32S, 1, nppiSet_32s_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32S, 4, nppiSet_32s_C4MR>::call},
{NppSetMask<CV_32F, 1, nppiSet_32f_C1MR>::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask<CV_32F, 4, nppiSet_32f_C4MR>::call},
{cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo }
};
CV_Assert(m.depth() <= CV_64F && m.channels() <= 4);
if (m.depth() == CV_64F)
{
if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE))
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
}
funcs[m.depth()][m.channels() - 1](m, s, mask);
}
}
void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const
{
cudaSafeCall( cudaMallocPitch(devPtr, step, width, height) );
}
void free(void* devPtr) const
{
cudaFree(devPtr);
}
};
2011-11-23 21:26:24 +08:00
const GpuFuncTable* gpuFuncTable()
{
static CudaFuncTable funcTable;
return &funcTable;
}
}
#endif // HAVE_CUDA
void cv::gpu::GpuMat::upload(const Mat& m)
{
CV_DbgAssert(!m.empty());
create(m.size(), m.type());
gpuFuncTable()->copy(m, *this);
}
void cv::gpu::GpuMat::download(Mat& m) const
{
CV_DbgAssert(!empty());
m.create(size(), type());
gpuFuncTable()->copy(*this, m);
}
void cv::gpu::GpuMat::copyTo(GpuMat& m) const
{
CV_DbgAssert(!empty());
m.create(size(), type());
gpuFuncTable()->copy(*this, m);
}
void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const
{
if (mask.empty())
copyTo(mat);
else
{
mat.create(size(), type());
gpuFuncTable()->copyWithMask(*this, mat, mask);
}
}
void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const
{
bool noScale = fabs(alpha - 1) < numeric_limits<double>::epsilon() && fabs(beta) < numeric_limits<double>::epsilon();
if (rtype < 0)
rtype = type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
int sdepth = depth();
int ddepth = CV_MAT_DEPTH(rtype);
if (sdepth == ddepth && noScale)
{
copyTo(dst);
return;
}
GpuMat temp;
const GpuMat* psrc = this;
if (sdepth != ddepth && psrc == &dst)
{
temp = *this;
psrc = &temp;
}
dst.create(size(), rtype);
if (noScale)
gpuFuncTable()->convert(*psrc, dst);
else
gpuFuncTable()->convert(*psrc, dst, alpha, beta);
}
GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask)
{
CV_Assert(mask.empty() || mask.type() == CV_8UC1);
CV_DbgAssert(!empty());
2011-11-23 21:26:24 +08:00
gpuFuncTable()->setTo(*this, s, mask);
return *this;
}
void cv::gpu::GpuMat::create(int _rows, int _cols, int _type)
{
_type &= TYPE_MASK;
if (rows == _rows && cols == _cols && type() == _type && data)
return;
if (data)
release();
CV_DbgAssert(_rows >= 0 && _cols >= 0);
if (_rows > 0 && _cols > 0)
{
flags = Mat::MAGIC_VAL + _type;
rows = _rows;
cols = _cols;
size_t esz = elemSize();
void* devPtr;
gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows);
// Single row must be continuous
if (rows == 1)
step = esz * cols;
if (esz * cols == step)
flags |= Mat::CONTINUOUS_FLAG;
int64 _nettosize = static_cast<int64>(step) * rows;
size_t nettosize = static_cast<size_t>(_nettosize);
datastart = data = static_cast<uchar*>(devPtr);
dataend = data + nettosize;
refcount = static_cast<int*>(fastMalloc(sizeof(*refcount)));
*refcount = 1;
}
}
void cv::gpu::GpuMat::release()
{
if (refcount && CV_XADD(refcount, -1) == 1)
{
fastFree(refcount);
gpuFuncTable()->free(datastart);
}
data = datastart = dataend = 0;
step = rows = cols = 0;
refcount = 0;
}
////////////////////////////////////////////////////////////////////////
// Error handling
void cv::gpu::error(const char *error_string, const char *file, const int line, const char *func)
2011-11-23 21:26:24 +08:00
{
int code = CV_GpuApiCallError;
if (uncaught_exception())
{
const char* errorStr = cvErrorStr(code);
const char* function = func ? func : "unknown function";
cerr << "OpenCV Error: " << errorStr << "(" << error_string << ") in " << function << ", file " << file << ", line " << line;
cerr.flush();
}
2011-11-23 21:26:24 +08:00
else
cv::error( cv::Exception(code, error_string, func, file, line) );
}