opencv/modules/core/perf/perf_math.cpp

72 lines
1.9 KiB
C++
Raw Normal View History

#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
typedef perf::TestBaseWithParam<size_t> VectorLength;
2012-10-10 16:28:17 +08:00
typedef std::tr1::tuple<int, int> MaxDim_MaxPoints_t;
typedef perf::TestBaseWithParam<MaxDim_MaxPoints_t> MaxDim_MaxPoints;
PERF_TEST_P(VectorLength, phase32f, testing::Values(128, 1000, 128*1024, 512*1024, 1024*1024))
{
size_t length = GetParam();
vector<float> X(length);
vector<float> Y(length);
vector<float> angle(length);
declare.in(X, Y, WARMUP_RNG).out(angle);
TEST_CYCLE_N(200) cv::phase(X, Y, angle, true);
SANITY_CHECK(angle, 5e-5);
}
2012-10-10 16:28:17 +08:00
PERF_TEST_P( MaxDim_MaxPoints, kmeans,
testing::Combine( testing::Values( 16, 32, 64 ),
testing::Values( 300, 400, 500) ) )
{
RNG& rng = theRNG();
const int MAX_DIM = get<0>(GetParam());
const int MAX_POINTS = get<1>(GetParam());
const int attempts = 5;
Mat labels, centers;
int i, N = 0, N0 = 0, K = 0, dims = 0;
dims = rng.uniform(1, MAX_DIM+1);
N = rng.uniform(1, MAX_POINTS+1);
N0 = rng.uniform(1, MAX(N/10, 2));
K = rng.uniform(1, N+1);
Mat data0(N0, dims, CV_32F);
rng.fill(data0, RNG::UNIFORM, -1, 1);
Mat data(N, dims, CV_32F);
for( i = 0; i < N; i++ )
data0.row(rng.uniform(0, N0)).copyTo(data.row(i));
declare.in(data);
TEST_CYCLE()
{
kmeans(data, K, labels, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 30, 0),
attempts, KMEANS_PP_CENTERS, centers);
}
Mat clusterPointsNumber = Mat::zeros(1, K, CV_32S);
for( i = 0; i < labels.rows; i++ )
{
int clusterIdx = labels.at<int>(i);
clusterPointsNumber.at<int>(clusterIdx)++;
}
Mat sortedClusterPointsNumber;
cv::sort(clusterPointsNumber, sortedClusterPointsNumber, cv::SORT_EVERY_ROW + cv::SORT_ASCENDING);
SANITY_CHECK(sortedClusterPointsNumber);
}