mirror of
https://github.com/opencv/opencv.git
synced 2025-01-01 22:24:06 +08:00
116 lines
2.8 KiB
C++
116 lines
2.8 KiB
C++
|
/**
|
||
|
* file Smoothing.cpp
|
||
|
* brief Sample code for simple filters
|
||
|
* author OpenCV team
|
||
|
*/
|
||
|
|
||
|
#include <iostream>
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/imgcodecs.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace cv;
|
||
|
|
||
|
/// Global Variables
|
||
|
int DELAY_CAPTION = 1500;
|
||
|
int DELAY_BLUR = 100;
|
||
|
int MAX_KERNEL_LENGTH = 31;
|
||
|
|
||
|
Mat src; Mat dst;
|
||
|
char window_name[] = "Smoothing Demo";
|
||
|
|
||
|
/// Function headers
|
||
|
int display_caption( const char* caption );
|
||
|
int display_dst( int delay );
|
||
|
|
||
|
|
||
|
/**
|
||
|
* function main
|
||
|
*/
|
||
|
int main( int argc, char ** argv )
|
||
|
{
|
||
|
namedWindow( window_name, WINDOW_AUTOSIZE );
|
||
|
|
||
|
/// Load the source image
|
||
|
const char* filename = argc >=2 ? argv[1] : "../data/lena.jpg";
|
||
|
|
||
|
src = imread( filename, IMREAD_COLOR );
|
||
|
if(src.empty()){
|
||
|
printf(" Error opening image\n");
|
||
|
printf(" Usage: ./Smoothing [image_name -- default ../data/lena.jpg] \n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if( display_caption( "Original Image" ) != 0 ) { return 0; }
|
||
|
|
||
|
dst = src.clone();
|
||
|
if( display_dst( DELAY_CAPTION ) != 0 ) { return 0; }
|
||
|
|
||
|
|
||
|
/// Applying Homogeneous blur
|
||
|
if( display_caption( "Homogeneous Blur" ) != 0 ) { return 0; }
|
||
|
|
||
|
//![blur]
|
||
|
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||
|
{ blur( src, dst, Size( i, i ), Point(-1,-1) );
|
||
|
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||
|
//![blur]
|
||
|
|
||
|
/// Applying Gaussian blur
|
||
|
if( display_caption( "Gaussian Blur" ) != 0 ) { return 0; }
|
||
|
|
||
|
//![gaussianblur]
|
||
|
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||
|
{ GaussianBlur( src, dst, Size( i, i ), 0, 0 );
|
||
|
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||
|
//![gaussianblur]
|
||
|
|
||
|
/// Applying Median blur
|
||
|
if( display_caption( "Median Blur" ) != 0 ) { return 0; }
|
||
|
|
||
|
//![medianblur]
|
||
|
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||
|
{ medianBlur ( src, dst, i );
|
||
|
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||
|
//![medianblur]
|
||
|
|
||
|
/// Applying Bilateral Filter
|
||
|
if( display_caption( "Bilateral Blur" ) != 0 ) { return 0; }
|
||
|
|
||
|
//![bilateralfilter]
|
||
|
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
|
||
|
{ bilateralFilter ( src, dst, i, i*2, i/2 );
|
||
|
if( display_dst( DELAY_BLUR ) != 0 ) { return 0; } }
|
||
|
//![bilateralfilter]
|
||
|
|
||
|
/// Done
|
||
|
display_caption( "Done!" );
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @function display_caption
|
||
|
*/
|
||
|
int display_caption( const char* caption )
|
||
|
{
|
||
|
dst = Mat::zeros( src.size(), src.type() );
|
||
|
putText( dst, caption,
|
||
|
Point( src.cols/4, src.rows/2),
|
||
|
FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255) );
|
||
|
|
||
|
return display_dst(DELAY_CAPTION);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @function display_dst
|
||
|
*/
|
||
|
int display_dst( int delay )
|
||
|
{
|
||
|
imshow( window_name, dst );
|
||
|
int c = waitKey ( delay );
|
||
|
if( c >= 0 ) { return -1; }
|
||
|
return 0;
|
||
|
}
|